Skip to content

Commit

Permalink
chapter14_part4: /110_Multi_Field_Search/15_Best_field.asciidoc (#90)
Browse files Browse the repository at this point in the history
* chapter14_part4: /110_Multi_Field_Search/15_Best_field.asciidoc

初译

* 修改

如果我们有个网站为用户允许博客内容搜索的功能》假设有个网站允许用户搜索博客的内容

* file name tag
  • Loading branch information
richardwei2008 authored and medcl committed Nov 4, 2016
1 parent 96a87a3 commit e5291a3
Showing 1 changed file with 19 additions and 33 deletions.
52 changes: 19 additions & 33 deletions 110_Multi_Field_Search/15_Best_field.asciidoc
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
=== Best Fields
[[_best_fields]]
=== 最佳字段

Imagine that we have a website that allows ((("multifield search", "best fields queries")))((("best fields queries")))users to search blog posts, such
as these two documents:
假设有个网站允许用户搜索博客的内容,((("multifield search", "best fields queries")))((("best fields queries")))以下面两篇博客内容文档为例:

[source,js]
--------------------------------------------------
Expand All @@ -19,13 +19,9 @@ PUT /my_index/my_type/2
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json

The user types in the words ``Brown fox'' and clicks Search. We don't
know ahead of time if the user's search terms will be found in the `title` or
the `body` field of the post, but it is likely that the user is searching for
related words. To our eyes, document 2 appears to be the better match, as it
contains both words that we are looking for.
用户输入词组 “Brown fox” 然后点击搜索按钮。事先,我们并不知道用户的搜索项是会在 `title` 还是在 `body` 字段中被找到,但是,用户很有可能是想搜索相关的词组。用肉眼判断,文档 2 的匹配度更高,因为它同时包括要查找的两个词:

Now we run the following `bool` query:
现在运行以下 `bool` 查询:

[source,js]
--------------------------------------------------
Expand All @@ -42,7 +38,7 @@ Now we run the following `bool` query:
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json

And we find that this query gives document 1 the higher score:
但是我们发现查询的结果是文档 1 的评分更高:

[source,js]
--------------------------------------------------
Expand All @@ -68,34 +64,25 @@ And we find that this query gives document 1 the higher score:
}
--------------------------------------------------

To understand why, think about how the `bool` query ((("bool query", "relevance score calculation")))((("relevance scores", "calculation in bool queries")))calculates its score:
为了理解导致这样的原因,((("bool query", "relevance score calculation")))((("relevance scores", "calculation in bool queries")))需要回想一下 `bool` 是如何计算评分的:

1. It runs both of the queries in the `should` clause.
2. It adds their scores together.
3. It multiplies the total by the number of matching clauses.
4. It divides the result by the total number of clauses (two).
1. 它会执行 `should` 语句中的两个查询。
2. 加和两个查询的评分。
3. 乘以匹配语句的总数。
4. 除以所有语句总数(这里为:2)。

Document 1 contains the word `brown` in both fields, so both `match` clauses
are successful and have a score. Document 2 contains both `brown` and
`fox` in the `body` field but neither word in the `title` field. The high
score from the `body` query is added to the zero score from the `title` query,
and multiplied by one-half, resulting in a lower overall score than for document 1.
文档 1 的两个字段都包含 `brown` 这个词,所以两个 `match` 语句都能成功匹配并且有一个评分。文档 2 的 `body` 字段同时包含 `brown` 和 `fox` 这两个词,但 `title` 字段没有包含任何词。这样, `body` 查询结果中的高分,加上 `title` 查询中的 0 分,然后乘以二分之一,就得到比文档 1 更低的整体评分。

在本例中, `title` 和 `body` 字段是相互竞争的关系,所以就需要找到单个 _最佳匹配_ 的字段。

如果不是简单将每个字段的评分结果加在一起,而是将 _最佳匹配_ 字段的评分作为查询的整体评分,结果会怎样?这样返回的结果可能是: _同时_ 包含 `brown` 和 `fox` 的单个字段比反复出现相同词语的多个不同字段有更高的相关度。

In this example, the `title` and `body` fields are competing with each other.
We want to find the single _best-matching_ field.

What if, instead of combining the scores from each field, we used the score
from the _best-matching_ field as the overall score for the query? This would
give preference to a single field that contains _both_ of the words we are
looking for, rather than the same word repeated in different fields.

[[dis-max-query]]
==== dis_max Query
==== dis_max 查询

Instead of the `bool` query, we can use the `dis_max` or _Disjunction Max
Query_. Disjunction means _or_((("dis_max (disjunction max) query"))) (while conjunction means _and_) so the
Disjunction Max Query simply means _return documents that match any of these
queries, and return the score of the best matching query_:
不使用 `bool` 查询,可以使用 `dis_max` 即分离 _最大化查询(Disjunction Max Query)_ 。分离(Disjunction)的意思是 _或(or)_ ,这与可以把结合(conjunction)理解成 _与(and)_ 相对应。分离最大化查询(Disjunction Max Query)指的是: _将任何与任一查询匹配的文档作为结果返回,但只将最佳匹配的评分作为查询的评分结果返回_ :

[source,js]
--------------------------------------------------
Expand All @@ -112,7 +99,7 @@ queries, and return the score of the best matching query_:
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json

This produces the results that we want:
得到我们想要的结果为:

[source,js]
--------------------------------------------------
Expand All @@ -137,4 +124,3 @@ This produces the results that we want:
]
}
--------------------------------------------------

0 comments on commit e5291a3

Please sign in to comment.