-
Notifications
You must be signed in to change notification settings - Fork 800
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Vector search example * addressed feedback * vectors example tests * skip vectors integration test for stacks < 8.11 --------- Co-authored-by: Quentin Pradet <quentin.pradet@elastic.co> (cherry picked from commit b5800d4)
- Loading branch information
1 parent
e30129d
commit 342386b
Showing
6 changed files
with
445 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
# Licensed to Elasticsearch B.V. under one or more contributor | ||
# license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright | ||
# ownership. Elasticsearch B.V. licenses this file to you under | ||
# the Apache License, Version 2.0 (the "License"); you may | ||
# not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
# Vector database example | ||
Requirements: | ||
$ pip install nltk sentence_transformers tqdm elasticsearch-dsl[async] | ||
To run the example: | ||
$ python vectors.py "text to search" | ||
The index will be created automatically if it does not exist. Add | ||
`--recreate-index` to regenerate it. | ||
The example dataset includes a selection of workplace documents. The | ||
following are good example queries to try out with this dataset: | ||
$ python vectors.py "work from home" | ||
$ python vectors.py "vacation time" | ||
$ python vectors.py "can I bring a bird to work?" | ||
When the index is created, the documents are split into short passages, and for | ||
each passage an embedding is generated using the open source | ||
"all-MiniLM-L6-v2" model. The documents that are returned as search results are | ||
those that have the highest scored passages. Add `--show-inner-hits` to the | ||
command to see individual passage results as well. | ||
""" | ||
|
||
import argparse | ||
import asyncio | ||
import json | ||
import os | ||
from urllib.request import urlopen | ||
|
||
import nltk | ||
from sentence_transformers import SentenceTransformer | ||
from tqdm import tqdm | ||
|
||
from elasticsearch_dsl import ( | ||
AsyncDocument, | ||
Date, | ||
DenseVector, | ||
InnerDoc, | ||
Keyword, | ||
Nested, | ||
Text, | ||
async_connections, | ||
) | ||
|
||
DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json" | ||
MODEL_NAME = "all-MiniLM-L6-v2" | ||
|
||
# initialize sentence tokenizer | ||
nltk.download("punkt", quiet=True) | ||
|
||
|
||
class Passage(InnerDoc): | ||
content = Text() | ||
embedding = DenseVector() | ||
|
||
|
||
class WorkplaceDoc(AsyncDocument): | ||
class Index: | ||
name = "workplace_documents" | ||
|
||
name = Text() | ||
summary = Text() | ||
content = Text() | ||
created = Date() | ||
updated = Date() | ||
url = Keyword() | ||
category = Keyword() | ||
passages = Nested(Passage) | ||
|
||
_model = None | ||
|
||
@classmethod | ||
def get_embedding_model(cls): | ||
if cls._model is None: | ||
cls._model = SentenceTransformer(MODEL_NAME) | ||
return cls._model | ||
|
||
def clean(self): | ||
# split the content into sentences | ||
passages = nltk.sent_tokenize(self.content) | ||
|
||
# generate an embedding for each passage and save it as a nested document | ||
model = self.get_embedding_model() | ||
for passage in passages: | ||
self.passages.append( | ||
Passage(content=passage, embedding=list(model.encode(passage))) | ||
) | ||
|
||
|
||
async def create(): | ||
|
||
# create the index | ||
await WorkplaceDoc._index.delete(ignore_unavailable=True) | ||
await WorkplaceDoc.init() | ||
|
||
# download the data | ||
dataset = json.loads(urlopen(DATASET_URL).read()) | ||
|
||
# import the dataset | ||
for data in tqdm(dataset, desc="Indexing documents..."): | ||
doc = WorkplaceDoc( | ||
name=data["name"], | ||
summary=data["summary"], | ||
content=data["content"], | ||
created=data.get("created_on"), | ||
updated=data.get("updated_at"), | ||
url=data["url"], | ||
category=data["category"], | ||
) | ||
await doc.save() | ||
|
||
|
||
async def search(query): | ||
model = WorkplaceDoc.get_embedding_model() | ||
return WorkplaceDoc.search().knn( | ||
field="passages.embedding", | ||
k=5, | ||
num_candidates=50, | ||
query_vector=list(model.encode(query)), | ||
inner_hits={"size": 2}, | ||
) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch") | ||
parser.add_argument( | ||
"--recreate-index", action="store_true", help="Recreate and populate the index" | ||
) | ||
parser.add_argument( | ||
"--show-inner-hits", | ||
action="store_true", | ||
help="Show results for individual passages", | ||
) | ||
parser.add_argument("query", action="store", help="The search query") | ||
return parser.parse_args() | ||
|
||
|
||
async def main(): | ||
args = parse_args() | ||
|
||
# initiate the default connection to elasticsearch | ||
async_connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]]) | ||
|
||
if args.recreate_index or not await WorkplaceDoc._index.exists(): | ||
await create() | ||
|
||
results = await search(args.query) | ||
|
||
async for hit in results: | ||
print( | ||
f"Document: {hit.name} [Category: {hit.category}] [Score: {hit.meta.score}]" | ||
) | ||
print(f"Summary: {hit.summary}") | ||
if args.show_inner_hits: | ||
for passage in hit.meta.inner_hits.passages: | ||
print(f" - [Score: {passage.meta.score}] {passage.content!r}") | ||
print("") | ||
|
||
# close the connection | ||
await async_connections.get_connection().close() | ||
|
||
|
||
if __name__ == "__main__": | ||
asyncio.run(main()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
# Licensed to Elasticsearch B.V. under one or more contributor | ||
# license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright | ||
# ownership. Elasticsearch B.V. licenses this file to you under | ||
# the Apache License, Version 2.0 (the "License"); you may | ||
# not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
# Vector database example | ||
Requirements: | ||
$ pip install nltk sentence_transformers tqdm elasticsearch-dsl | ||
To run the example: | ||
$ python vectors.py "text to search" | ||
The index will be created automatically if it does not exist. Add | ||
`--recreate-index` to regenerate it. | ||
The example dataset includes a selection of workplace documents. The | ||
following are good example queries to try out with this dataset: | ||
$ python vectors.py "work from home" | ||
$ python vectors.py "vacation time" | ||
$ python vectors.py "can I bring a bird to work?" | ||
When the index is created, the documents are split into short passages, and for | ||
each passage an embedding is generated using the open source | ||
"all-MiniLM-L6-v2" model. The documents that are returned as search results are | ||
those that have the highest scored passages. Add `--show-inner-hits` to the | ||
command to see individual passage results as well. | ||
""" | ||
|
||
import argparse | ||
import json | ||
import os | ||
from urllib.request import urlopen | ||
|
||
import nltk | ||
from sentence_transformers import SentenceTransformer | ||
from tqdm import tqdm | ||
|
||
from elasticsearch_dsl import ( | ||
Date, | ||
DenseVector, | ||
Document, | ||
InnerDoc, | ||
Keyword, | ||
Nested, | ||
Text, | ||
connections, | ||
) | ||
|
||
DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json" | ||
MODEL_NAME = "all-MiniLM-L6-v2" | ||
|
||
# initialize sentence tokenizer | ||
nltk.download("punkt", quiet=True) | ||
|
||
|
||
class Passage(InnerDoc): | ||
content = Text() | ||
embedding = DenseVector() | ||
|
||
|
||
class WorkplaceDoc(Document): | ||
class Index: | ||
name = "workplace_documents" | ||
|
||
name = Text() | ||
summary = Text() | ||
content = Text() | ||
created = Date() | ||
updated = Date() | ||
url = Keyword() | ||
category = Keyword() | ||
passages = Nested(Passage) | ||
|
||
_model = None | ||
|
||
@classmethod | ||
def get_embedding_model(cls): | ||
if cls._model is None: | ||
cls._model = SentenceTransformer(MODEL_NAME) | ||
return cls._model | ||
|
||
def clean(self): | ||
# split the content into sentences | ||
passages = nltk.sent_tokenize(self.content) | ||
|
||
# generate an embedding for each passage and save it as a nested document | ||
model = self.get_embedding_model() | ||
for passage in passages: | ||
self.passages.append( | ||
Passage(content=passage, embedding=list(model.encode(passage))) | ||
) | ||
|
||
|
||
def create(): | ||
|
||
# create the index | ||
WorkplaceDoc._index.delete(ignore_unavailable=True) | ||
WorkplaceDoc.init() | ||
|
||
# download the data | ||
dataset = json.loads(urlopen(DATASET_URL).read()) | ||
|
||
# import the dataset | ||
for data in tqdm(dataset, desc="Indexing documents..."): | ||
doc = WorkplaceDoc( | ||
name=data["name"], | ||
summary=data["summary"], | ||
content=data["content"], | ||
created=data.get("created_on"), | ||
updated=data.get("updated_at"), | ||
url=data["url"], | ||
category=data["category"], | ||
) | ||
doc.save() | ||
|
||
|
||
def search(query): | ||
model = WorkplaceDoc.get_embedding_model() | ||
return WorkplaceDoc.search().knn( | ||
field="passages.embedding", | ||
k=5, | ||
num_candidates=50, | ||
query_vector=list(model.encode(query)), | ||
inner_hits={"size": 2}, | ||
) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch") | ||
parser.add_argument( | ||
"--recreate-index", action="store_true", help="Recreate and populate the index" | ||
) | ||
parser.add_argument( | ||
"--show-inner-hits", | ||
action="store_true", | ||
help="Show results for individual passages", | ||
) | ||
parser.add_argument("query", action="store", help="The search query") | ||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
# initiate the default connection to elasticsearch | ||
connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]]) | ||
|
||
if args.recreate_index or not WorkplaceDoc._index.exists(): | ||
create() | ||
|
||
results = search(args.query) | ||
|
||
for hit in results: | ||
print( | ||
f"Document: {hit.name} [Category: {hit.category}] [Score: {hit.meta.score}]" | ||
) | ||
print(f"Summary: {hit.summary}") | ||
if args.show_inner_hits: | ||
for passage in hit.meta.inner_hits.passages: | ||
print(f" - [Score: {passage.meta.score}] {passage.content!r}") | ||
print("") | ||
|
||
# close the connection | ||
connections.get_connection().close() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.