You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm pretty sure the fixef of LMER models used to have as its index the group labels. Now the index appears to be a range index.
2. Minimal reproducible example
In [1]: from pymer4.models import Lmer
...: from pymer4.utils import get_resource_path
...: import pandas as pd
...: import numpy as np
...: from scipy.special import logit
...: from scipy.stats import ttest_ind
...: import os
In [2]: import pymer4
...: pymer4.version
Out[2]: '0.7.2'
In [6]: model.fixef[0].index
Out[6]: RangeIndex(start=0, stop=47, step=1)
3. Conda environment
Conda environment created with the following command
conda create -p potdys3 -c ejolly -c conda-forge python=3.8.8 numpy=1.19.2 pandas=1.1.5 pytest=6.2.2 joblib=1.0.1 rpy2=3.4.3 matplotlib=3.3.4 seaborn=0.11.1 scikit-learn=0.24.1 numexpr=2.7.3 patsy=0.5.1 statsmodels=0.12.2 openpyxl=3.0.7 pymer4=0.7.2 ipython jupyter notebook
conda list --explicit > pymer4_issue.txt
[pymer4_issue.txt](https://github.com/ejolly/pymer4/files/6286562/pymer4_issue.txt)
4. System information
Mac OSX, in a terminal window
$ uname -mprsv
Darwin 18.7.0 Darwin Kernel Version 18.7.0: Tue Jan 12 22:04:47 PST 2021; root:xnu-4903.278.56~1/RELEASE_X86_64 x86_64 i386
$ sw_vers
ProductName: Mac OS X
ProductVersion: 10.14.6
BuildVersion: 18G8022
The text was updated successfully, but these errors were encountered:
1. Description
I'm pretty sure the fixef of LMER models used to have as its index the group labels. Now the index appears to be a range index.
2. Minimal reproducible example
In [1]: from pymer4.models import Lmer
...: from pymer4.utils import get_resource_path
...: import pandas as pd
...: import numpy as np
...: from scipy.special import logit
...: from scipy.stats import ttest_ind
...: import os
In [2]: import pymer4
...: pymer4.version
Out[2]: '0.7.2'
In [3]: df = pd.read_csv(os.path.join(get_resource_path(), "sample_data.csv"))
...: model = Lmer("DV ~ IV3 + IV2 + (IV2|Group) + (1|IV3)", data=df)
...: opt_opts = "optimizer='Nelder_Mead', optCtrl = list(FtolAbs=1e-8, XtolRel=1e-8)"
...: model.fit(summarize=False, control=opt_opts)
boundary (singular) fit: see ?isSingular
In [4]: model.fixef[0]
Out[4]:
(Intercept) IV3 IV2
0 6.031047 -1.529462 0.880139
1 20.356120 -1.529462 0.605304
2 10.322812 -1.529462 0.836379
3 12.222470 -1.529462 0.858911
4 11.251184 -1.529462 0.198474
5 12.626052 -1.529462 0.902386
6 2.466363 -1.529462 0.082339
7 -1.951063 -1.529462 1.070559
8 41.427467 -1.529462 0.256847
9 -0.327156 -1.529462 0.532686
10 3.409337 -1.529462 0.826673
11 4.183722 -1.529462 1.022796
12 17.441838 -1.529462 -0.170657
13 16.894473 -1.529462 0.719052
14 9.393190 -1.529462 0.630868
15 20.406180 -1.529462 0.112961
16 16.228585 -1.529462 0.670403
17 -0.947947 -1.529462 0.977892
18 2.960673 -1.529462 0.881681
19 15.081342 -1.529462 0.903035
20 3.099670 -1.529462 0.271275
21 11.046744 -1.529462 0.898630
22 1.995796 -1.529462 0.827309
23 0.502841 -1.529462 0.637432
24 16.325339 -1.529462 0.684816
25 28.728807 -1.529462 0.552281
26 0.282634 -1.529462 1.083250
27 12.274335 -1.529462 0.778643
28 2.900907 -1.529462 0.997698
29 25.969906 -1.529462 0.569460
30 18.774758 -1.529462 0.784060
31 41.014190 -1.529462 0.384460
32 17.825418 -1.529462 -0.101800
33 1.311976 -1.529462 0.714895
34 7.733580 -1.529462 0.970813
35 7.566232 -1.529462 0.603793
36 2.572444 -1.529462 0.991525
37 30.764099 -1.529462 0.557071
38 7.069487 -1.529462 0.870455
39 11.825799 -1.529462 0.858441
40 15.998152 -1.529462 0.395001
41 16.461600 -1.529462 0.839032
42 9.140041 -1.529462 0.900363
43 15.011776 -1.529462 0.765686
44 9.947849 -1.529462 0.858361
45 -2.077808 -1.529462 1.090571
46 32.480301 -1.529462 0.269124
In [5]: df.Group.unique()
Out[5]:
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53])
In [6]: model.fixef[0].index
Out[6]: RangeIndex(start=0, stop=47, step=1)
3. Conda environment
Conda environment created with the following command
conda create -p potdys3 -c ejolly -c conda-forge python=3.8.8 numpy=1.19.2 pandas=1.1.5 pytest=6.2.2 joblib=1.0.1 rpy2=3.4.3 matplotlib=3.3.4 seaborn=0.11.1 scikit-learn=0.24.1 numexpr=2.7.3 patsy=0.5.1 statsmodels=0.12.2 openpyxl=3.0.7 pymer4=0.7.2 ipython jupyter notebook
4. System information
The text was updated successfully, but these errors were encountered: