Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to plot figures using the NK example files #6

Open
Troylimyj opened this issue Feb 23, 2021 · 2 comments
Open

Unable to plot figures using the NK example files #6

Troylimyj opened this issue Feb 23, 2021 · 2 comments

Comments

@Troylimyj
Copy link

Thank you for developing this very interesting ML tool for cytof data analysis. I am new to Python and keen to utilise your algorithm for my dataset.

However when trying to run using the example NK cells data set, I keep getting this error code, I wonder if you could advise further.

run run_analysis.py -f NK_fcs_samples_with_labels.csv -m NK_markers.csv -i gated_NK/ -o outdir_NK --export_csv --group_a CMV- --group_b CMV+ --verbose 0

2021-02-23 13:44:11 - main:156 - INFO - Samples used for model training: ['a_001_NK.fcs', 'a_002_NK.fcs', 'a_003_NK.fcs', 'a_004_NK.fcs', 'a_006_NK.fcs', 'a_009_NK.fcs', 'a_010_NK.fcs', 'a_011_NK.fcs', 'a_012_NK.fcs', 'a_1a_NK.fcs', 'a_2a_NK.fcs', 'a_2b_NK.fcs', 'a_4a_NK.fcs', 'a_4b_NK.fcs', 'a_5a_NK.fcs']
2021-02-23 13:44:11 - main:157 - INFO - Samples used for validation: ['a_005_NK.fcs', 'a_007_NK.fcs', 'a_3a_NK.fcs', 'a_3b_NK.fcs', 'a_5b_NK.fcs']
2021-02-23 13:44:12 - cellCnn.model:320 - INFO - Generating multi-cell inputs...
2021-02-23 13:44:12 - cellCnn.model:390 - INFO - Done.
2021-02-23 13:44:12 - cellCnn.model:425 - INFO - Number of filters: 3
2021-02-23 13:44:12 - cellCnn.model:431 - INFO - Cells pooled: 1
63/63 [==============================] - 0s 1ms/step - loss: 0.6482 - accuracy: 0.6768
2021-02-23 13:44:16 - cellCnn.model:460 - INFO - Best validation accuracy: 0.68
2021-02-23 13:44:16 - cellCnn.model:425 - INFO - Number of filters: 6
2021-02-23 13:44:16 - cellCnn.model:431 - INFO - Cells pooled: 2
63/63 [==============================] - 0s 1ms/step - loss: 0.4967 - accuracy: 0.7944
2021-02-23 13:44:25 - cellCnn.model:460 - INFO - Best validation accuracy: 0.79
2021-02-23 13:44:25 - cellCnn.model:425 - INFO - Number of filters: 8
2021-02-23 13:44:25 - cellCnn.model:431 - INFO - Cells pooled: 10
63/63 [==============================] - 0s 1ms/step - loss: 0.3701 - accuracy: 0.8989
2021-02-23 13:44:34 - cellCnn.model:460 - INFO - Best validation accuracy: 0.90
2021-02-23 13:44:34 - cellCnn.model:425 - INFO - Number of filters: 4
2021-02-23 13:44:34 - cellCnn.model:431 - INFO - Cells pooled: 40
63/63 [==============================] - 0s 1ms/step - loss: 0.6090 - accuracy: 0.7579
2021-02-23 13:44:38 - cellCnn.model:460 - INFO - Best validation accuracy: 0.76
2021-02-23 13:44:38 - cellCnn.model:425 - INFO - Number of filters: 6
2021-02-23 13:44:38 - cellCnn.model:431 - INFO - Cells pooled: 1
63/63 [==============================] - 0s 1ms/step - loss: 0.5279 - accuracy: 0.7724
2021-02-23 13:44:45 - cellCnn.model:460 - INFO - Best validation accuracy: 0.77
2021-02-23 13:44:45 - cellCnn.model:425 - INFO - Number of filters: 7
2021-02-23 13:44:45 - cellCnn.model:431 - INFO - Cells pooled: 2
63/63 [==============================] - 0s 1ms/step - loss: 0.6276 - accuracy: 0.7114
2021-02-23 13:44:50 - cellCnn.model:460 - INFO - Best validation accuracy: 0.71
2021-02-23 13:44:50 - cellCnn.model:425 - INFO - Number of filters: 9
2021-02-23 13:44:50 - cellCnn.model:431 - INFO - Cells pooled: 10
63/63 [==============================] - 0s 1ms/step - loss: 0.4519 - accuracy: 0.8374
2021-02-23 13:44:58 - cellCnn.model:460 - INFO - Best validation accuracy: 0.84
2021-02-23 13:44:58 - cellCnn.model:425 - INFO - Number of filters: 4
2021-02-23 13:44:58 - cellCnn.model:431 - INFO - Cells pooled: 40
63/63 [==============================] - 0s 1ms/step - loss: 0.3997 - accuracy: 0.9390
2021-02-23 13:45:03 - cellCnn.model:460 - INFO - Best validation accuracy: 0.94
2021-02-23 13:45:03 - cellCnn.model:425 - INFO - Number of filters: 5
2021-02-23 13:45:03 - cellCnn.model:431 - INFO - Cells pooled: 1
63/63 [==============================] - 0s 2ms/step - loss: 0.6324 - accuracy: 0.8139
2021-02-23 13:45:07 - cellCnn.model:460 - INFO - Best validation accuracy: 0.81
2021-02-23 13:45:07 - cellCnn.model:425 - INFO - Number of filters: 8
2021-02-23 13:45:07 - cellCnn.model:431 - INFO - Cells pooled: 2
63/63 [==============================] - 0s 1ms/step - loss: 0.4493 - accuracy: 0.8229
2021-02-23 13:45:17 - cellCnn.model:460 - INFO - Best validation accuracy: 0.82
2021-02-23 13:45:17 - cellCnn.model:425 - INFO - Number of filters: 5
2021-02-23 13:45:17 - cellCnn.model:431 - INFO - Cells pooled: 10
63/63 [==============================] - 0s 1ms/step - loss: 0.6025 - accuracy: 0.7044
2021-02-23 13:45:22 - cellCnn.model:460 - INFO - Best validation accuracy: 0.70
2021-02-23 13:45:22 - cellCnn.model:425 - INFO - Number of filters: 7
2021-02-23 13:45:22 - cellCnn.model:431 - INFO - Cells pooled: 40
63/63 [==============================] - 0s 1ms/step - loss: 0.4441 - accuracy: 0.8574
2021-02-23 13:45:29 - cellCnn.model:460 - INFO - Best validation accuracy: 0.86
2021-02-23 13:45:29 - cellCnn.model:425 - INFO - Number of filters: 7
2021-02-23 13:45:29 - cellCnn.model:431 - INFO - Cells pooled: 1
63/63 [==============================] - 0s 1ms/step - loss: 0.4593 - accuracy: 0.8219
2021-02-23 13:45:37 - cellCnn.model:460 - INFO - Best validation accuracy: 0.82
2021-02-23 13:45:37 - cellCnn.model:425 - INFO - Number of filters: 4
2021-02-23 13:45:37 - cellCnn.model:431 - INFO - Cells pooled: 2
63/63 [==============================] - 0s 1ms/step - loss: 0.5350 - accuracy: 0.7729
2021-02-23 13:45:42 - cellCnn.model:460 - INFO - Best validation accuracy: 0.77
2021-02-23 13:45:42 - cellCnn.model:425 - INFO - Number of filters: 6
2021-02-23 13:45:42 - cellCnn.model:431 - INFO - Cells pooled: 10
63/63 [==============================] - 0s 1ms/step - loss: 0.2961 - accuracy: 0.9450
2021-02-23 13:45:51 - cellCnn.model:460 - INFO - Best validation accuracy: 0.94
2021-02-23 13:45:53 - cellCnn.plotting:144 - INFO - Loading the weights of consensus filters.
2021-02-23 13:45:53 - cellCnn.plotting:168 - INFO - Computing t-SNE projection...
C:\Users\yeong\AppData\Local\Programs\Python\Python37\Scripts\CellCnn-python3\cellCnn\plotting.py:582: MatplotlibDeprecationWarning:
The 'add_all' parameter of init() was deprecated in Matplotlib 3.3 and will be removed two minor releases later. If any parameter follows 'add_all', they should be passed as keyword, not positionally.
cbar_pad="5%",

TypeError Traceback (most recent call last)
~\AppData\Local\Programs\Python\Python37\Scripts\CellCnn-python3\run_analysis.py in
240 if name == 'main':
241 try:
--> 242 main()
243 except KeyboardInterrupt:
244 sys.stderr.write("User interrupt!\n")

~\AppData\Local\Programs\Python\Python37\Scripts\CellCnn-python3\run_analysis.py in main()
209 tsne_ncell=args.tsne_ncell,
210 regression=args.regression,
--> 211 show_filters=False)
212 _v = plot_results(results, valid_samples, valid_phenotypes,
213 marker_names, os.path.join(plotdir, 'validation_plots'),

~\AppData\Local\Programs\Python\Python37\Scripts\CellCnn-python3\cellCnn\plotting.py in plot_results(results, samples, phenotypes, labels, outdir, filter_diff_thres, filter_response_thres, response_grad_cutoff, stat_test, log_yscale, group_a, group_b, group_names, tsne_ncell, regression, show_filters)
176 fig_path = os.path.join(outdir, 'tsne_all_cells')
177 plot_tsne_grid(x_tsne, x_for_tsne, fig_path, labels=labels, fig_size=(20, 20),
--> 178 point_size=5)
179
180 return_filters = []

~\AppData\Local\Programs\Python\Python37\Scripts\CellCnn-python3\cellCnn\plotting.py in plot_tsne_grid(z, x, fig_path, labels, fig_size, g_j, suffix, point_size)
580 cbar_mode="each",
581 cbar_size="8%",
--> 582 cbar_pad="5%",
583 )
584 for seq_index in range(ncol):

c:\users\yeong\appdata\local\programs\python\python37\lib\site-packages\matplotlib\cbook\deprecation.py in wrapper(*inner_args, **inner_kwargs)
409 else deprecation_addendum,
410 **kwargs)
--> 411 return func(*inner_args, **inner_kwargs)
412
413 return wrapper

c:\users\yeong\appdata\local\programs\python\python37\lib\site-packages\mpl_toolkits\axes_grid1\axes_grid.py in init(self, fig, rect, nrows_ncols, ngrids, direction, axes_pad, add_all, share_all, aspect, label_mode, cbar_mode, cbar_location, cbar_pad, cbar_size, cbar_set_cax, axes_class)
434 direction=direction, axes_pad=axes_pad,
435 share_all=share_all, share_x=True, share_y=True, aspect=aspect,
--> 436 label_mode=label_mode, axes_class=axes_class)
437 else: # Only show deprecation in that case.
438 super().init(

c:\users\yeong\appdata\local\programs\python\python37\lib\site-packages\matplotlib\cbook\deprecation.py in wrapper(*inner_args, **inner_kwargs)
409 else deprecation_addendum,
410 **kwargs)
--> 411 return func(*inner_args, **inner_kwargs)
412
413 return wrapper

c:\users\yeong\appdata\local\programs\python\python37\lib\site-packages\mpl_toolkits\axes_grid1\axes_grid.py in init(self, fig, rect, nrows_ncols, ngrids, direction, axes_pad, add_all, share_all, share_x, share_y, label_mode, axes_class, aspect)
210 if add_all:
211 for ax in self.axes_all:
--> 212 fig.add_axes(ax)
213
214 self.set_label_mode(label_mode)

c:\users\yeong\appdata\local\programs\python\python37\lib\site-packages\matplotlib\figure.py in add_axes(self, *args, **kwargs)
1234 else:
1235 rect = args[0]
-> 1236 if not np.isfinite(rect).all():
1237 raise ValueError('all entries in rect must be finite '
1238 'not {}'.format(rect))

TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

@eleniel-mocna
Copy link

I've had the same issue and solved it by downgrading matplotlib to version 2.2.
Rewriting pipfile with locked versions would probably solve this issue...

@Z-Forest
Copy link

Z-Forest commented Dec 7, 2021

@Troylimyj @eleniel-mocna
Hello, I just learned Python and found that the data set website of this project is no longer accessible. Could you please share a relevant data set with me? Thank you very much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants