-
Notifications
You must be signed in to change notification settings - Fork 0
/
book.bib
325 lines (292 loc) · 10.6 KB
/
book.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@article{keele2021comparing,
title={Comparing covariate prioritization via matching to machine learning methods for causal inference using five empirical applications},
author={Keele, Luke and Small, Dylan S},
journal={The American Statistician},
pages={1--9},
year={2021},
publisher={Taylor \& Francis}
}
@article{antman2000timi,
title={The TIMI risk score for unstable angina/non--ST elevation MI: a method for prognostication and therapeutic decision making},
author={Antman, Elliott M and Cohen, Marc and Bernink, Peter JLM and McCabe, Carolyn H and Horacek, Thomas and Papuchis, Gary and Mautner, Branco and Corbalan, Ramon and Radley, David and Braunwald, Eugene},
journal={Jama},
volume={284},
number={7},
pages={835--842},
year={2000},
publisher={American Medical Association}
}
@article{rivera2020guidelines,
title={Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension},
author={Rivera, Samantha Cruz and Liu, Xiaoxuan and Chan, An-Wen and Denniston, Alastair K and Calvert, Melanie J},
journal={bmj},
volume={370},
year={2020},
publisher={British Medical Journal Publishing Group}
}
@article{liu2020reporting,
title={Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension},
author={Liu, Xiaoxuan and Rivera, Samantha Cruz and Moher, David and Calvert, Melanie J and Denniston, Alastair K},
journal={bmj},
volume={370},
year={2020},
publisher={British Medical Journal Publishing Group}
}
@article{vinny2021critical,
title={Critical appraisal of a machine learning paper: A guide for the neurologist},
author={Vinny, Pulikottil W and Garg, Rahul and Srivastava, MV Padma and Lal, Vivek and Vishnu, Venugoapalan Y},
journal={Annals of Indian Academy of Neurology},
volume={24},
number={4},
pages={481},
year={2021},
publisher={Wolters Kluwer--Medknow Publications}
}
@book{steyerberg2019clinical,
title={Clinical prediction models},
author={Steyerberg, Ewout W and others},
year={2019},
publisher={Springer}
}
@article{nguyen2017double,
title={Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance},
author={Nguyen, Tri-Long and Collins, Gary S and Spence, Jessica and Daur{\`e}s, Jean-Pierre and Devereaux, PJ and Landais, Paul and Le Manach, Yannick},
journal={BMC medical research methodology},
volume={17},
number={1},
pages={1--8},
year={2017},
publisher={Springer}
}
@article{alam2019should,
title={Should a propensity score model be super? the utility of ensemble procedures for causal adjustment},
author={Alam, Shomoita and Moodie, Erica EM and Stephens, David A},
journal={Statistics in medicine},
volume={38},
number={9},
pages={1690--1702},
year={2019},
publisher={Wiley Online Library}
}
@article{keele2018pre,
title={Pre-analysis Plan for a Comparison of Matching and Black Box-based Covariate Adjustment},
author={Keele, Luke and Small, Dylan S},
journal={Observational Studies},
volume={4},
number={1},
pages={97--110},
year={2018},
publisher={University of Pennsylvania Press}
}
@article{austin2011tutorial,
title={A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality},
author={Austin, Peter C},
journal={Multivariate behavioral research},
volume={46},
number={1},
pages={119--151},
year={2011},
publisher={Taylor \& Francis}
}
@article{connors1996effectiveness,
title={The effectiveness of right heart catheterization in the initial care of critically III patients},
author={Connors, Alfred F and Speroff, Theodore and Dawson, Neal V and Thomas, Charles and Harrell, Frank E and Wagner, Douglas and Desbiens, Norman and Goldman, Lee and Wu, Albert W and Califf, Robert M and others},
journal={Jama},
volume={276},
number={11},
pages={889--897},
year={1996},
url = {https://tinyurl.com/Connors1996},
publisher={American Medical Association}
}
@article{gruber2012tmle,
title={tmle: An R package for targeted maximum likelihood estimation},
author={Gruber, Susan and van der Laan, Mark},
journal={Journal of Statistical Software},
volume={51},
number={1},
pages={1--35},
year={2012}
}
@article{gruber2010targeted,
title={A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome},
author={Gruber, Susan and van der Laan, Mark J},
journal={The International Journal of Biostatistics},
volume={6},
number={1},
year={2010},
publisher={De Gruyter}
}
@article{luque2018targeted,
title={Targeted maximum likelihood estimation for a binary treatment: A tutorial},
author={Luque-Fernandez, Miguel Angel and Schomaker, Michael and Rachet, Bernard and Schnitzer, Mireille E},
journal={Statistics in medicine},
volume={37},
number={16},
pages={2530--2546},
year={2018},
publisher={Wiley Online Library}
}
@book{van2012targeted,
title = "Targeted learning",
author = "van der Laan, Mark J and Petersen, Maya L",
year = 2012,
publisher = "Springer",
address = "NY"
}
@article{gruber2009targeted,
title={Targeted maximum likelihood estimation: A gentle introduction},
author={Gruber, Susan and Van Der Laan, Mark J},
year={2009},
publisher={bepress}
}
@article{naimi2018stacked,
title={Stacked generalization: an introduction to super learning},
author={Naimi, Ashley I and Balzer, Laura B},
journal={European journal of epidemiology},
volume={33},
number={5},
pages={459--464},
year={2018},
publisher={Springer}
}
@article{rose2013mortality,
title={Mortality risk score prediction in an elderly population using machine learning},
author={Rose, Sherri},
journal={American journal of epidemiology},
volume={177},
number={5},
pages={443--452},
year={2013},
publisher={Oxford University Press}
}
@article{pirracchio2015improving,
title={Improving propensity score estimators' robustness to model misspecification using super learner},
author={Pirracchio, Romain and Petersen, Maya L and Van Der Laan, Mark},
journal={American journal of epidemiology},
volume={181},
number={2},
pages={108--119},
year={2015},
publisher={Oxford University Press}
}
@article{schuler2017targeted,
title={Targeted maximum likelihood estimation for causal inference in observational studies},
author={Schuler, Megan S and Rose, Sherri},
journal={American journal of epidemiology},
volume={185},
number={1},
pages={65--73},
year={2017},
publisher={Oxford University Press}
}
@article{naimi2017introduction,
title={An introduction to g methods},
author={Naimi, Ashley I and Cole, Stephen R and Kennedy, Edward H},
journal={International journal of epidemiology},
volume={46},
number={2},
pages={756--762},
year={2017},
publisher={Oxford University Press}
}
@article{zhong2021aipw,
title={AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects},
author={Zhong, Yongqi and Kennedy, Edward H and Bodnar, Lisa M and Naimi, Ashley I},
journal={American Journal of Epidemiology},
year={2021}
}
@article{snowden2011implementation,
title={Implementation of G-computation on a simulated data set: demonstration of a causal inference technique},
author={Snowden, Jonathan M and Rose, Sherri and Mortimer, Kathleen M},
journal={American journal of epidemiology},
volume={173},
number={7},
pages={731--738},
year={2011},
publisher={Oxford University Press}
}
@article{austin2015moving,
title={Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies},
author={Austin, Peter C and Stuart, Elizabeth A},
journal={Statistics in medicine},
volume={34},
number={28},
pages={3661--3679},
year={2015},
publisher={Wiley Online Library}
}
@article{rose2020intersections,
title={Intersections of machine learning and epidemiological methods for health services research},
author={Rose, Sherri},
journal={International journal of epidemiology},
volume={49},
number={6},
pages={1763--1770},
year={2020},
publisher={Oxford University Press}
}
@article{naimi2017challenges,
title={Challenges in obtaining valid causal effect estimates with machine learning algorithms},
author={Naimi, Ashley I and Mishler, Alan E and Kennedy, Edward H},
journal={arXiv preprint arXiv:1711.07137},
year={2017}
}
@article{balzer2021demystifying,
title={Demystifying Statistical Inference When Using Machine Learning in Causal Research},
author={Balzer, Laura B and Westling, Ted},
journal={American Journal of Epidemiology},
year={2021}
}
@manual{tmlePkgDocs,
title={Package 'tmle'},
author={Gruber, S. and Van Der Laan, M. and Kennedy, C.},
year={2020},
url={https://cran.r-project.org/web/packages/tmle/tmle.pdf}
}
@manual{coyle2021sl3,
author = {Coyle, Jeremy R and Hejazi, Nima S and Malenica, Ivana and
Sofrygin, Oleg},
title = {{sl3}: Modern Pipelines for Machine Learning and {Super
Learning}},
year = {2021},
howpublished = {\url{https://github.com/tlverse/sl3}},
note = {{R} package version 1.4.2},
url = {https://doi.org/10.5281/zenodo.1342293},
doi = {10.5281/zenodo.1342293}
}
@book{coyle2021tlverse,
author = {Coyle, Jeremy R and Hejazi, Nima S and Melencia, Ivana and Phillips, Rachael and Hubbard, Alex},
title = {Targeted Learning in {R}: Causal Data Science with the {tlverse} Software Ecosystem},
year = {2021},
howpublished = {\url{https://github.com/tlverse/tlverse-handbook}},
url = {https://tlverse.org/tlverse-handbook/}
}
@Article{Zhong2021AIPW,
title = {AIPW: An R Package for Augmented Inverse Probability
Weighted Estimation of Average Causal Effects},
author = {{Yongqi Zhong} and {Edward H. Kennedy} and {Lisa M.
Bodnar} and {Ashley I. Naimi}},
journal = {American Journal of Epidemiology},
year = {2021},
note = {In Press},
}
@Article{Lendle2017ltmle,
title = {{ltmle}: An {R} Package Implementing Targeted Minimum Loss-Based Estimation for Longitudinal Data},
author = {Lendle, Samuel D. and Schwab, Joshua and Petersen, Maya L. and van der Laan, Mark J.},
journal = {Journal of Statistical Software},
year = {2017},
volume = {81},
number = {1},
pages = {1-21},
doi = {10.18637/jss.v081.i01}
}
@software{coyle2021tmle3-rpkg,
author = {Coyle, Jeremy R},
title = {{tmle3}: The Extensible {TMLE} Framework},
year = {2021},
howpublished = {\url{https://github.com/tlverse/tmle3}},
note = {{R} package version 0.2.0},
url = {https://doi.org/10.5281/zenodo.4603358},
doi = {10.5281/zenodo.4603358}
}