-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.py
925 lines (794 loc) · 37.1 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# 1x1InvertibleConv and WN based on implementation from WaveGlow https://github.com/NVIDIA/waveglow/blob/master/glow.py
# Original license:
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch import nn
from torch.nn import functional as F
from torch.cuda import amp
from torch.cuda.amp import autocast as autocast
import numpy as np
import ast
from splines import (piecewise_linear_transform,
piecewise_linear_inverse_transform,
unbounded_piecewise_quadratic_transform)
from partialconv1d import PartialConv1d as pconv1d
from typing import Tuple
def update_params(config, params):
for param in params:
print(param)
k, v = param.split("=")
try:
v = ast.literal_eval(v)
except:
pass
k_split = k.split('.')
if len(k_split) > 1:
parent_k = k_split[0]
cur_param = ['.'.join(k_split[1:])+"="+str(v)]
update_params(config[parent_k], cur_param)
elif k in config and len(k_split) == 1:
print(f"overriding {k} with {v}")
config[k] = v
else:
print("{}, {} params not updated".format(k, v))
def get_mask_from_lengths(lengths):
"""Constructs binary mask from a 1D torch tensor of input lengths
Args:
lengths (torch.tensor): 1D tensor
Returns:
mask (torch.tensor): num_sequences x max_length x 1 binary tensor
"""
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.LongTensor(max_len))
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
class ExponentialClass(torch.nn.Module):
def __init__(self):
super(ExponentialClass, self).__init__()
def forward(self, x):
return torch.exp(x)
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear',
use_partial_padding=False, use_weight_norm=False):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.kernel_size = kernel_size
self.dilation = dilation
self.use_partial_padding = use_partial_padding
self.use_weight_norm = use_weight_norm
conv_fn = torch.nn.Conv1d
if self.use_partial_padding:
conv_fn = pconv1d
self.conv = conv_fn(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
if self.use_weight_norm:
self.conv = nn.utils.weight_norm(self.conv)
def forward(self, signal, mask=None):
if self.use_partial_padding:
conv_signal = self.conv(signal, mask)
else:
conv_signal = self.conv(signal)
if mask is not None:
# always re-zero output if mask is
# available to match zero-padding
conv_signal = conv_signal * mask
return conv_signal
class DenseLayer(nn.Module):
def __init__(self, in_dim=1024, sizes=[1024, 1024]):
super(DenseLayer, self).__init__()
in_sizes = [in_dim] + sizes[:-1]
self.layers = nn.ModuleList(
[LinearNorm(in_size, out_size, bias=True)
for (in_size, out_size) in zip(in_sizes, sizes)])
def forward(self, x):
for linear in self.layers:
x = torch.tanh(linear(x))
return x
class LengthRegulator(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, dur):
output = []
for x_i, dur_i in zip(x, dur):
expanded = self.expand(x_i, dur_i)
output.append(expanded)
output = self.pad(output)
return output
def expand(self, x, dur):
output = []
for i, frame in enumerate(x):
expanded_len = int(dur[i] + 0.5)
expanded = frame.expand(expanded_len, -1)
output.append(expanded)
output = torch.cat(output, 0)
return output
def pad(self, x):
output = []
max_len = max([x[i].size(0) for i in range(len(x))])
for i, seq in enumerate(x):
padded = F.pad(
seq, [0, 0, 0, max_len - seq.size(0)], 'constant', 0.0)
output.append(padded)
output = torch.stack(output)
return output
class ConvLSTMLinear(nn.Module):
def __init__(self, in_dim, out_dim, n_layers=2, n_channels=256,
kernel_size=3, p_dropout=0.1, lstm_type='bilstm',
use_linear=True):
super(ConvLSTMLinear, self).__init__()
self.out_dim = out_dim
self.lstm_type = lstm_type
self.use_linear = use_linear
self.dropout = nn.Dropout(p=p_dropout)
convolutions = []
for i in range(n_layers):
conv_layer = ConvNorm(
in_dim if i == 0 else n_channels, n_channels,
kernel_size=kernel_size, stride=1,
padding=int((kernel_size - 1) / 2), dilation=1,
w_init_gain='relu')
conv_layer = torch.nn.utils.weight_norm(
conv_layer.conv, name='weight')
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
if not self.use_linear:
n_channels = out_dim
if self.lstm_type != '':
use_bilstm = False
lstm_channels = n_channels
if self.lstm_type == 'bilstm':
use_bilstm = True
lstm_channels = int(n_channels // 2)
self.bilstm = nn.LSTM(n_channels, lstm_channels, 1,
batch_first=True, bidirectional=use_bilstm)
lstm_norm_fn_pntr = nn.utils.spectral_norm
self.bilstm = lstm_norm_fn_pntr(self.bilstm, 'weight_hh_l0')
if self.lstm_type == 'bilstm':
self.bilstm = lstm_norm_fn_pntr(self.bilstm, 'weight_hh_l0_reverse')
if self.use_linear:
self.dense = nn.Linear(n_channels, out_dim)
def run_padded_sequence(self, context, lens):
context_embedded = []
for b_ind in range(context.size()[0]): # TODO: speed up
curr_context = context[b_ind:b_ind+1, :, :lens[b_ind]].clone()
for conv in self.convolutions:
curr_context = self.dropout(F.relu(conv(curr_context)))
context_embedded.append(curr_context[0].transpose(0, 1))
context = torch.nn.utils.rnn.pad_sequence(
context_embedded, batch_first=True)
return context
def run_unsorted_inputs(self, fn, context, lens):
lens_sorted, ids_sorted = torch.sort(lens, descending=True)
unsort_ids = [0] * lens.size(0)
for i in range(len(ids_sorted)):
unsort_ids[ids_sorted[i]] = i
lens_sorted = lens_sorted.long().cpu()
context = context[ids_sorted]
context = nn.utils.rnn.pack_padded_sequence(
context, lens_sorted, batch_first=True)
context = fn(context)[0]
context = nn.utils.rnn.pad_packed_sequence(
context, batch_first=True)[0]
# map back to original indices
context = context[unsort_ids]
return context
def forward(self, context, lens):
if context.size()[0] > 1:
context = self.run_padded_sequence(context, lens)
# to B, D, T
context = context.transpose(1, 2)
else:
for conv in self.convolutions:
context = self.dropout(F.relu(conv(context)))
if self.lstm_type != '':
context = context.transpose(1, 2)
self.bilstm.flatten_parameters()
if lens is not None:
context = self.run_unsorted_inputs(self.bilstm, context, lens)
else:
context = self.bilstm(context)[0]
context = context.transpose(1, 2)
x_hat = context
if self.use_linear:
x_hat = self.dense(context.transpose(1, 2)).transpose(1, 2)
return x_hat
def infer(self, z, txt_enc, spk_emb):
x_hat = self.forward(txt_enc, spk_emb)['x_hat']
x_hat = self.feature_processing.denormalize(x_hat)
return x_hat
class Encoder(nn.Module):
"""Encoder module:
- Three 1-d convolution banks
- Bidirectional LSTM
"""
def __init__(self, encoder_n_convolutions=3, encoder_embedding_dim=512,
encoder_kernel_size=5, norm_fn=nn.BatchNorm1d,
lstm_norm_fn=None):
super(Encoder, self).__init__()
convolutions = []
for _ in range(encoder_n_convolutions):
conv_layer = nn.Sequential(
ConvNorm(encoder_embedding_dim,
encoder_embedding_dim,
kernel_size=encoder_kernel_size, stride=1,
padding=int((encoder_kernel_size - 1) / 2),
dilation=1, w_init_gain='relu',
use_partial_padding=True),
norm_fn(encoder_embedding_dim, affine=True))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(encoder_embedding_dim,
int(encoder_embedding_dim / 2), 1,
batch_first=True, bidirectional=True)
if lstm_norm_fn is not None:
if 'spectral' in lstm_norm_fn:
print("Applying spectral norm to text encoder LSTM")
lstm_norm_fn_pntr = torch.nn.utils.spectral_norm
elif 'weight' in lstm_norm_fn:
print("Applying weight norm to text encoder LSTM")
lstm_norm_fn_pntr = torch.nn.utils.weight_norm
self.lstm = lstm_norm_fn_pntr(self.lstm, 'weight_hh_l0')
self.lstm = lstm_norm_fn_pntr(self.lstm, 'weight_hh_l0_reverse')
@amp.autocast(False)
def forward(self, x, in_lens):
"""
Args:
x (torch.tensor): N x C x L padded input of text embeddings
in_lens (torch.tensor): 1D tensor of sequence lengths
"""
if x.size()[0] > 1:
x_embedded = []
for b_ind in range(x.size()[0]): # TODO: improve speed
curr_x = x[b_ind:b_ind+1, :, :in_lens[b_ind]].clone()
for conv in self.convolutions:
curr_x = F.dropout(F.relu(conv(curr_x)),
0.5, self.training)
x_embedded.append(curr_x[0].transpose(0, 1))
x = torch.nn.utils.rnn.pad_sequence(x_embedded, batch_first=True)
else:
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2)
# recent amp change -- change in_lens to int
in_lens = in_lens.int().cpu()
x = nn.utils.rnn.pack_padded_sequence(x, in_lens, batch_first=True)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
outputs, _ = nn.utils.rnn.pad_packed_sequence(
outputs, batch_first=True)
return outputs
@amp.autocast(False)
def infer(self, x):
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
return outputs
class Invertible1x1ConvLUS(torch.nn.Module):
def __init__(self, c, cache_inverse=False):
super(Invertible1x1ConvLUS, self).__init__()
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1*W[:, 0]
p, lower, upper = torch.lu_unpack(*torch.lu(W))
self.register_buffer('p', p)
# diagonals of lower will always be 1s anyway
lower = torch.tril(lower, -1)
lower_diag = torch.diag(torch.eye(c, c))
self.register_buffer('lower_diag', lower_diag)
self.lower = nn.Parameter(lower)
self.upper_diag = nn.Parameter(torch.diag(upper))
self.upper = nn.Parameter(torch.triu(upper, 1))
self.cache_inverse = cache_inverse
@amp.autocast(False)
def forward(self, z, inverse=False):
U = torch.triu(self.upper, 1) + torch.diag(self.upper_diag)
L = torch.tril(self.lower, -1) + torch.diag(self.lower_diag)
W = torch.mm(self.p, torch.mm(L, U))
if inverse:
if not hasattr(self, 'W_inverse'):
# inverse computation
W_inverse = W.float().inverse()
if z.type() == 'torch.cuda.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse[..., None]
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
if not self.cache_inverse:
delattr(self, 'W_inverse')
return z
else:
W = W[..., None]
z = F.conv1d(z, W, bias=None, stride=1, padding=0)
log_det_W = torch.sum(torch.log(torch.abs(self.upper_diag)))
return z, log_det_W
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If inverse=True it does convolution with
inverse
"""
def __init__(self, c, cache_inverse=False):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1*W[:, 0]
W = W.view(c, c, 1)
self.conv.weight.data = W
self.cache_inverse = cache_inverse
def forward(self, z, inverse=False):
# DO NOT apply n_of_groups, as it doesn't account for padded sequences
W = self.conv.weight.squeeze()
if inverse:
if not hasattr(self, 'W_inverse'):
# Inverse computation
W_inverse = W.float().inverse()
if z.type() == 'torch.cuda.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse[..., None]
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
if not self.cache_inverse:
delattr(self, 'W_inverse')
return z
else:
# Forward computation
log_det_W = torch.logdet(W).clone()
z = self.conv(z)
return z, log_det_W
class SimpleConvNet(torch.nn.Module):
def __init__(self, n_mel_channels, n_context_dim, final_out_channels,
n_layers=2, kernel_size=5, with_dilation=True,
max_channels=1024, zero_init=True, use_partial_padding=True):
super(SimpleConvNet, self).__init__()
self.layers = torch.nn.ModuleList()
self.n_layers = n_layers
in_channels = n_mel_channels + n_context_dim
out_channels = -1
self.use_partial_padding = use_partial_padding
for i in range(n_layers):
dilation = 2 ** i if with_dilation else 1
padding = int((kernel_size*dilation - dilation)/2)
out_channels = min(max_channels, in_channels * 2)
self.layers.append(ConvNorm(in_channels, out_channels,
kernel_size=kernel_size, stride=1,
padding=padding, dilation=dilation,
bias=True, w_init_gain='relu',
use_partial_padding=use_partial_padding))
in_channels = out_channels
self.last_layer = torch.nn.Conv1d(
out_channels, final_out_channels, kernel_size=1)
if zero_init:
self.last_layer.weight.data *= 0
self.last_layer.bias.data *= 0
def forward(self, z_w_context, seq_lens: torch.Tensor = None):
# seq_lens: tensor array of sequence sequence lengths
# output should be b x n_mel_channels x z_w_context.shape(2)
mask = None
if seq_lens is not None:
mask = get_mask_from_lengths(seq_lens).unsqueeze(1).float()
for i in range(self.n_layers):
z_w_context = self.layers[i](z_w_context, mask)
z_w_context = torch.relu(z_w_context)
z_w_context = self.last_layer(z_w_context)
return z_w_context
class WN(torch.nn.Module):
"""
Adapted from WN() module in WaveGlow with modififcations to variable names
"""
def __init__(self, n_in_channels, n_context_dim, n_layers, n_channels,
kernel_size=5, affine_activation='softplus',
use_partial_padding=True):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels+n_context_dim, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start
self.softplus = torch.nn.Softplus()
self.affine_activation = affine_activation
self.use_partial_padding = use_partial_padding
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size*dilation - dilation)/2)
in_layer = ConvNorm(n_channels, n_channels, kernel_size=kernel_size,
dilation=dilation, padding=padding,
use_partial_padding=use_partial_padding,
use_weight_norm=True)
# in_layer = nn.Conv1d(n_channels, n_channels, kernel_size,
# dilation=dilation, padding=padding)
# in_layer = nn.utils.weight_norm(in_layer)
self.in_layers.append(in_layer)
res_skip_layer = nn.Conv1d(n_channels, n_channels, 1)
res_skip_layer = nn.utils.weight_norm(res_skip_layer)
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input: Tuple[torch.Tensor, torch.Tensor], seq_lens: torch.Tensor = None):
z, context = forward_input
z = torch.cat((z, context), 1) # append context to z as well
z = self.start(z)
output = torch.zeros_like(z)
mask = None
if seq_lens is not None:
mask = get_mask_from_lengths(seq_lens).unsqueeze(1).float()
non_linearity = torch.relu
if self.affine_activation == 'softplus':
non_linearity = self.softplus
for i in range(self.n_layers):
z = non_linearity(self.in_layers[i](z, mask))
res_skip_acts = non_linearity(self.res_skip_layers[i](z))
output = output + res_skip_acts
output = self.end(output) # [B, dim, seq_len]
return output
# Affine Coupling Layers
class SplineTransformationLayerAR(torch.nn.Module):
def __init__(self, n_in_channels, n_context_dim, n_layers,
affine_model='simple_conv', kernel_size=1, scaling_fn='exp',
affine_activation='softplus', n_channels=1024, n_bins=8,
left=-6, right=6, bottom=-6, top=6, use_quadratic=False):
super(SplineTransformationLayerAR, self).__init__()
self.n_in_channels = n_in_channels # input dimensions
self.left = left
self.right = right
self.bottom = bottom
self.top = top
self.n_bins = n_bins
self.spline_fn = piecewise_linear_transform
self.inv_spline_fn = piecewise_linear_inverse_transform
self.use_quadratic = use_quadratic
if self.use_quadratic:
self.spline_fn = unbounded_piecewise_quadratic_transform
self.inv_spline_fn = unbounded_piecewise_quadratic_transform
self.n_bins = 2 * self.n_bins + 1
final_out_channels = self.n_in_channels * self.n_bins
# autoregressive flow, kernel size 1 and no dilation
self.param_predictor = SimpleConvNet(
n_context_dim, 0, final_out_channels, n_layers,
with_dilation=False, kernel_size=1, zero_init=True,
use_partial_padding=False)
# output is unnormalized bin weights
def normalize(self, z, inverse):
# normalize to [0, 1]
if inverse:
z = (z - self.bottom) / (self.top - self.bottom)
else:
z = (z - self.left) / (self.right - self.left)
return z
def denormalize(self, z, inverse):
if inverse:
z = z * (self.right - self.left) + self.left
else:
z = z * (self.top - self.bottom) + self.bottom
return z
def forward(self, z, context, inverse=False):
b_s, c_s, t_s = z.size(0), z.size(1), z.size(2)
z = self.normalize(z, inverse)
if z.min() < 0.0 or z.max() > 1.0:
print('spline z scaled beyond [0, 1]', z.min(), z.max())
z_reshaped = z.permute(0, 2, 1).reshape(b_s * t_s, -1)
affine_params = self.param_predictor(context)
q_tilde = affine_params.permute(0, 2, 1).reshape(b_s * t_s, c_s, -1)
with amp.autocast(enabled=False):
if self.use_quadratic:
w = q_tilde[:, :, :self.n_bins // 2]
v = q_tilde[:, :, self.n_bins // 2:]
z_tformed, log_s = self.spline_fn(
z_reshaped.float(), w.float(), v.float(), inverse=inverse)
else:
z_tformed, log_s = self.spline_fn(
z_reshaped.float(), q_tilde.float())
z = z_tformed.reshape(b_s, t_s, -1).permute(0, 2, 1)
z = self.denormalize(z, inverse)
if inverse:
return z
log_s = log_s.reshape(b_s, t_s, -1)
log_s = log_s.permute(0, 2, 1)
log_s = log_s + c_s * (np.log(self.top - self.bottom) -
np.log(self.right - self.left))
return z, log_s
class SplineTransformationLayer(torch.nn.Module):
def __init__(self, n_mel_channels, n_context_dim, n_layers,
with_dilation=True, kernel_size=5,
scaling_fn='exp', affine_activation='softplus',
n_channels=1024, n_bins=8, left=-4, right=4, bottom=-4, top=4,
use_quadratic=False):
super(SplineTransformationLayer, self).__init__()
self.n_mel_channels = n_mel_channels # input dimensions
self.half_mel_channels = int(n_mel_channels/2) # half, because we split
self.left = left
self.right = right
self.bottom = bottom
self.top = top
self.n_bins = n_bins
self.spline_fn = piecewise_linear_transform
self.inv_spline_fn = piecewise_linear_inverse_transform
self.use_quadratic = use_quadratic
if self.use_quadratic:
self.spline_fn = unbounded_piecewise_quadratic_transform
self.inv_spline_fn = unbounded_piecewise_quadratic_transform
self.n_bins = 2*self.n_bins+1
final_out_channels = self.half_mel_channels*self.n_bins
self.param_predictor = SimpleConvNet(
self.half_mel_channels, n_context_dim, final_out_channels,
n_layers, with_dilation=with_dilation, kernel_size=kernel_size,
zero_init=False)
# output is unnormalized bin weights
def forward(self, z, context, inverse=False, seq_lens=None):
b_s, c_s, t_s = z.size(0), z.size(1), z.size(2)
# condition on z_0, transform z_1
n_half = self.half_mel_channels
z_0, z_1 = z[:, :n_half], z[:, n_half:]
# normalize to [0,1]
if inverse:
z_1 = (z_1 - self.bottom)/(self.top - self.bottom)
else:
z_1 = (z_1 - self.left)/(self.right - self.left)
z_w_context = torch.cat((z_0, context), 1)
affine_params = self.param_predictor(z_w_context, seq_lens)
z_1_reshaped = z_1.permute(0, 2, 1).reshape(b_s*t_s, -1)
q_tilde = affine_params.permute(0, 2, 1).reshape(
b_s*t_s, n_half, self.n_bins)
with autocast(enabled=False):
if self.use_quadratic:
w = q_tilde[:, :, :self.n_bins//2]
v = q_tilde[:, :, self.n_bins//2:]
z_1_tformed, log_s = self.spline_fn(
z_1_reshaped.float(), w.float(), v.float(),
inverse=inverse)
if not inverse:
log_s = torch.sum(log_s, 1)
else:
if inverse:
z_1_tformed, _dc = self.inv_spline_fn(
z_1_reshaped.float(), q_tilde.float(), False)
else:
z_1_tformed, log_s = self.spline_fn(
z_1_reshaped.float(), q_tilde.float())
z_1 = z_1_tformed.reshape(b_s, t_s, -1).permute(0, 2, 1)
# undo [0, 1] normalization
if inverse:
z_1 = z_1 * (self.right - self.left) + self.left
z = torch.cat((z_0, z_1), dim=1)
return z
else: # training
z_1 = z_1 * (self.top - self.bottom) + self.bottom
z = torch.cat((z_0, z_1), dim=1)
log_s = log_s.reshape(b_s, t_s).unsqueeze(1) + \
n_half*(np.log(self.top - self.bottom) -
np.log(self.right-self.left))
return z, log_s
class AffineTransformationLayer(torch.nn.Module):
def __init__(self, n_mel_channels, n_context_dim, n_layers,
affine_model='simple_conv', with_dilation=True, kernel_size=5,
scaling_fn='exp', affine_activation='softplus',
n_channels=1024, use_partial_padding=False):
super(AffineTransformationLayer, self).__init__()
if affine_model not in ("wavenet", "simple_conv"):
raise Exception("{} affine model not supported".format(affine_model))
if isinstance(scaling_fn, list):
if not all([x in ("translate", "exp", "tanh", "sigmoid") for x in scaling_fn]):
raise Exception("{} scaling fn not supported".format(scaling_fn))
else:
if scaling_fn not in ("translate", "exp", "tanh", "sigmoid"):
raise Exception("{} scaling fn not supported".format(scaling_fn))
self.affine_model = affine_model
self.scaling_fn = scaling_fn
if affine_model == 'wavenet':
self.affine_param_predictor = WN(
int(n_mel_channels/2), n_context_dim, n_layers=n_layers,
n_channels=n_channels, affine_activation=affine_activation,
use_partial_padding=use_partial_padding)
elif affine_model == 'simple_conv':
self.affine_param_predictor = SimpleConvNet(
int(n_mel_channels / 2), n_context_dim, n_mel_channels,
n_layers, with_dilation=with_dilation, kernel_size=kernel_size,
use_partial_padding=use_partial_padding)
self.n_mel_channels = n_mel_channels
def get_scaling_and_logs(self, scale_unconstrained):
if self.scaling_fn == 'translate':
s = torch.exp(scale_unconstrained*0)
log_s = scale_unconstrained*0
elif self.scaling_fn == 'exp':
s = torch.exp(scale_unconstrained)
log_s = scale_unconstrained # log(exp
elif self.scaling_fn == 'tanh':
s = torch.tanh(scale_unconstrained) + 1 + 1e-6
log_s = torch.log(s)
elif self.scaling_fn == 'sigmoid':
s = torch.sigmoid(scale_unconstrained + 10) + 1e-6
log_s = torch.log(s)
elif isinstance(self.scaling_fn, list):
s_list, log_s_list = [], []
for i in range(scale_unconstrained.shape[1]):
scaling_i = self.scaling_fn[i]
if scaling_i == 'translate':
s_i = torch.exp(scale_unconstrained[:i]*0)
log_s_i = scale_unconstrained[:, i]*0
elif scaling_i == 'exp':
s_i = torch.exp(scale_unconstrained[:, i])
log_s_i = scale_unconstrained[:, i]
elif scaling_i == 'tanh':
s_i = torch.tanh(scale_unconstrained[:, i]) + 1 + 1e-6
log_s_i = torch.log(s_i)
elif scaling_i == 'sigmoid':
s_i = torch.sigmoid(scale_unconstrained[:, i]) + 1e-6
log_s_i = torch.log(s_i)
s_list.append(s_i[:, None])
log_s_list.append(log_s_i[:, None])
s = torch.cat(s_list, dim=1)
log_s = torch.cat(log_s_list, dim=1)
return s, log_s
def forward(self, z, context, inverse=False, seq_lens=None):
n_half = int(self.n_mel_channels / 2)
z_0, z_1 = z[:, :n_half], z[:, n_half:]
if self.affine_model == 'wavenet':
affine_params = self.affine_param_predictor(
(z_0, context), seq_lens=seq_lens)
elif self.affine_model == 'simple_conv':
z_w_context = torch.cat((z_0, context), 1)
affine_params = self.affine_param_predictor(
z_w_context, seq_lens=seq_lens)
scale_unconstrained = affine_params[:, :n_half, :]
b = affine_params[:, n_half:, :]
s, log_s = self.get_scaling_and_logs(scale_unconstrained)
if inverse:
z_1 = (z_1 - b) / s
z = torch.cat((z_0, z_1), dim=1)
return z
else:
z_1 = s * z_1 + b
z = torch.cat((z_0, z_1), dim=1)
return z, log_s
class ConvAttention(torch.nn.Module):
def __init__(self, n_mel_channels=80, n_text_channels=512,
n_att_channels=80, temperature=1.0):
super(ConvAttention, self).__init__()
self.temperature = temperature
self.softmax = torch.nn.Softmax(dim=3)
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.key_proj = nn.Sequential(
ConvNorm(n_text_channels, n_text_channels*2, kernel_size=3,
bias=True, w_init_gain='relu'),
torch.nn.ReLU(),
ConvNorm(n_text_channels*2, n_att_channels, kernel_size=1,
bias=True))
self.query_proj = nn.Sequential(
ConvNorm(n_mel_channels, n_mel_channels*2, kernel_size=3,
bias=True, w_init_gain='relu'),
torch.nn.ReLU(),
ConvNorm(n_mel_channels*2, n_mel_channels, kernel_size=1,
bias=True),
torch.nn.ReLU(),
ConvNorm(n_mel_channels, n_att_channels, kernel_size=1, bias=True)
)
def run_padded_sequence(self, sorted_idx, unsort_idx, lens, padded_data,
recurrent_model):
"""Sorts input data by previded ordering (and un-ordering) and runs the
packed data through the recurrent model
Args:
sorted_idx (torch.tensor): 1D sorting index
unsort_idx (torch.tensor): 1D unsorting index (inverse of sorted_idx)
lens: lengths of input data (sorted in descending order)
padded_data (torch.tensor): input sequences (padded)
recurrent_model (nn.Module): recurrent model to run data through
Returns:
hidden_vectors (torch.tensor): outputs of the RNN, in the original,
unsorted, ordering
"""
# sort the data by decreasing length using provided index
# we assume batch index is in dim=1
padded_data = padded_data[:, sorted_idx]
padded_data = nn.utils.rnn.pack_padded_sequence(padded_data, lens)
hidden_vectors = recurrent_model(padded_data)[0]
hidden_vectors, _ = nn.utils.rnn.pad_packed_sequence(hidden_vectors)
# unsort the results at dim=1 and return
hidden_vectors = hidden_vectors[:, unsort_idx]
return hidden_vectors
def forward(self, queries, keys, query_lens, mask=None, key_lens=None,
attn_prior=None):
"""Attention mechanism for radtts. Unlike in Flowtron, we have no
restrictions such as causality etc, since we only need this during
training.
Args:
queries (torch.tensor): B x C x T1 tensor (likely mel data)
keys (torch.tensor): B x C2 x T2 tensor (text data)
query_lens: lengths for sorting the queries in descending order
mask (torch.tensor): uint8 binary mask for variable length entries
(should be in the T2 domain)
Output:
attn (torch.tensor): B x 1 x T1 x T2 attention mask.
Final dim T2 should sum to 1
"""
temp = 0.0005
keys_enc = self.key_proj(keys) # B x n_attn_dims x T2
# Beware can only do this since query_dim = attn_dim = n_mel_channels
queries_enc = self.query_proj(queries)
# Gaussian Isotopic Attention
# B x n_attn_dims x T1 x T2
attn = (queries_enc[:, :, :, None] - keys_enc[:, :, None])**2
# compute log-likelihood from gaussian
eps = 1e-8
attn = -temp * attn.sum(1, keepdim=True)
if attn_prior is not None:
attn = self.log_softmax(attn) + torch.log(attn_prior[:, None] + eps)
attn_logprob = attn.clone()
if mask is not None:
attn.data.masked_fill_(
mask.permute(0, 2, 1).unsqueeze(2), -float("inf"))
attn = self.softmax(attn) # softmax along T2
return attn, attn_logprob