forked from CoinCheung/BiSeNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcityscapes_cv2.py
213 lines (185 loc) · 10.4 KB
/
cityscapes_cv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import os
import os.path as osp
import json
import torch
from torch.utils.data import Dataset, DataLoader
import torch.distributed as dist
import cv2
import numpy as np
import bisenetv2.transform_cv2 as T
from sampler import RepeatedDistSampler
labels_info = [
{"hasInstances": False, "category": "void", "catid": 0, "name": "unlabeled", "ignoreInEval": True, "id": 0, "color": [0, 0, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "ego vehicle", "ignoreInEval": True, "id": 1, "color": [0, 0, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "rectification border", "ignoreInEval": True, "id": 2, "color": [0, 0, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "out of roi", "ignoreInEval": True, "id": 3, "color": [0, 0, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "static", "ignoreInEval": True, "id": 4, "color": [0, 0, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "dynamic", "ignoreInEval": True, "id": 5, "color": [111, 74, 0], "trainId": 255},
{"hasInstances": False, "category": "void", "catid": 0, "name": "ground", "ignoreInEval": True, "id": 6, "color": [81, 0, 81], "trainId": 255},
{"hasInstances": False, "category": "flat", "catid": 1, "name": "road", "ignoreInEval": False, "id": 7, "color": [128, 64, 128], "trainId": 0},
{"hasInstances": False, "category": "flat", "catid": 1, "name": "sidewalk", "ignoreInEval": False, "id": 8, "color": [244, 35, 232], "trainId": 1},
{"hasInstances": False, "category": "flat", "catid": 1, "name": "parking", "ignoreInEval": True, "id": 9, "color": [250, 170, 160], "trainId": 255},
{"hasInstances": False, "category": "flat", "catid": 1, "name": "rail track", "ignoreInEval": True, "id": 10, "color": [230, 150, 140], "trainId": 255},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "building", "ignoreInEval": False, "id": 11, "color": [70, 70, 70], "trainId": 2},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "wall", "ignoreInEval": False, "id": 12, "color": [102, 102, 156], "trainId": 3},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "fence", "ignoreInEval": False, "id": 13, "color": [190, 153, 153], "trainId": 4},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "guard rail", "ignoreInEval": True, "id": 14, "color": [180, 165, 180], "trainId": 255},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "bridge", "ignoreInEval": True, "id": 15, "color": [150, 100, 100], "trainId": 255},
{"hasInstances": False, "category": "construction", "catid": 2, "name": "tunnel", "ignoreInEval": True, "id": 16, "color": [150, 120, 90], "trainId": 255},
{"hasInstances": False, "category": "object", "catid": 3, "name": "pole", "ignoreInEval": False, "id": 17, "color": [153, 153, 153], "trainId": 5},
{"hasInstances": False, "category": "object", "catid": 3, "name": "polegroup", "ignoreInEval": True, "id": 18, "color": [153, 153, 153], "trainId": 255},
{"hasInstances": False, "category": "object", "catid": 3, "name": "traffic light", "ignoreInEval": False, "id": 19, "color": [250, 170, 30], "trainId": 6},
{"hasInstances": False, "category": "object", "catid": 3, "name": "traffic sign", "ignoreInEval": False, "id": 20, "color": [220, 220, 0], "trainId": 7},
{"hasInstances": False, "category": "nature", "catid": 4, "name": "vegetation", "ignoreInEval": False, "id": 21, "color": [107, 142, 35], "trainId": 8},
{"hasInstances": False, "category": "nature", "catid": 4, "name": "terrain", "ignoreInEval": False, "id": 22, "color": [152, 251, 152], "trainId": 9},
{"hasInstances": False, "category": "sky", "catid": 5, "name": "sky", "ignoreInEval": False, "id": 23, "color": [70, 130, 180], "trainId": 10},
{"hasInstances": True, "category": "human", "catid": 6, "name": "person", "ignoreInEval": False, "id": 24, "color": [220, 20, 60], "trainId": 11},
{"hasInstances": True, "category": "human", "catid": 6, "name": "rider", "ignoreInEval": False, "id": 25, "color": [255, 0, 0], "trainId": 12},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "car", "ignoreInEval": False, "id": 26, "color": [0, 0, 142], "trainId": 13},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "truck", "ignoreInEval": False, "id": 27, "color": [0, 0, 70], "trainId": 14},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "bus", "ignoreInEval": False, "id": 28, "color": [0, 60, 100], "trainId": 15},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "caravan", "ignoreInEval": True, "id": 29, "color": [0, 0, 90], "trainId": 255},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "trailer", "ignoreInEval": True, "id": 30, "color": [0, 0, 110], "trainId": 255},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "train", "ignoreInEval": False, "id": 31, "color": [0, 80, 100], "trainId": 16},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "motorcycle", "ignoreInEval": False, "id": 32, "color": [0, 0, 230], "trainId": 17},
{"hasInstances": True, "category": "vehicle", "catid": 7, "name": "bicycle", "ignoreInEval": False, "id": 33, "color": [119, 11, 32], "trainId": 18},
{"hasInstances": False, "category": "vehicle", "catid": 7, "name": "license plate", "ignoreInEval": True, "id": -1, "color": [0, 0, 142], "trainId": -1}
]
class CityScapes(Dataset):
'''
'''
def __init__(self, datapth, trans_func=None, mode='train'):
super(CityScapes, self).__init__()
assert mode in ('train', 'val', 'test')
self.mode = mode
self.trans_func = trans_func
self.n_cats = 19
self.lb_ignore = 255
self.lb_map = np.arange(256).astype(np.uint8)
for el in labels_info:
self.lb_map[el['id']] = el['trainId']
## parse img directory
self.imgs = {}
imgnames = []
impth = osp.join(datapth, 'leftImg8bit', mode)
folders = os.listdir(impth)
for fd in folders:
fdpth = osp.join(impth, fd)
im_names = os.listdir(fdpth)
names = [el.replace('_leftImg8bit.png', '') for el in im_names]
impths = [osp.join(fdpth, el) for el in im_names]
imgnames.extend(names)
self.imgs.update(dict(zip(names, impths)))
## parse gt directory
self.labels = {}
gtnames = []
gtpth = osp.join(datapth, 'gtFine', mode)
folders = os.listdir(gtpth)
for fd in folders:
fdpth = osp.join(gtpth, fd)
lbnames = os.listdir(fdpth)
lbnames = [el for el in lbnames if 'labelIds' in el]
names = [el.replace('_gtFine_labelIds.png', '') for el in lbnames]
lbpths = [osp.join(fdpth, el) for el in lbnames]
gtnames.extend(names)
self.labels.update(dict(zip(names, lbpths)))
self.imnames = imgnames
self.len = len(self.imnames)
assert set(imgnames) == set(gtnames)
assert set(self.imnames) == set(self.imgs.keys())
assert set(self.imnames) == set(self.labels.keys())
self.to_tensor = T.ToTensor(
mean=(0.3257, 0.3690, 0.3223), # city, rgb
std=(0.2112, 0.2148, 0.2115),
)
def __getitem__(self, idx):
fn = self.imnames[idx]
impth, lbpth = self.imgs[fn], self.labels[fn]
img, label = cv2.imread(impth), cv2.imread(lbpth, 0)
label = self.lb_map[label]
im_lb = dict(im=img, lb=label)
if not self.trans_func is None:
im_lb = self.trans_func(im_lb)
im_lb = self.to_tensor(im_lb)
img, label = im_lb['im'], im_lb['lb']
return img.detach(), label.unsqueeze(0).detach()
def __len__(self):
return self.len
class TransformationTrain(object):
def __init__(self):
self.trans_func = T.Compose([
# T.RandomResizedCrop([0.375, 1.], [512, 1024]),
T.RandomResizedCrop([0.25, 2], [512, 1024]),
T.RandomHorizontalFlip(),
T.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4
),
])
def __call__(self, im_lb):
im_lb = self.trans_func(im_lb)
return im_lb
class TransformationVal(object):
def __call__(self, im_lb):
im, lb = im_lb['im'], im_lb['lb']
# im = cv2.resize(im, (1024, 512))
return dict(im=im, lb=lb)
def get_data_loader(datapth, ims_per_gpu, max_iter=None, mode='train', distributed=True):
train_trans_func = TransformationTrain()
val_trans_func = TransformationVal()
if mode == 'train':
trans_func = train_trans_func
batchsize = ims_per_gpu
shuffle = True
drop_last = True
elif mode == 'val':
trans_func = val_trans_func
batchsize = ims_per_gpu * 2
shuffle = False
drop_last = False
ds = CityScapes(datapth, trans_func=trans_func, mode=mode)
if distributed:
assert dist.is_available(), "dist should be initialzed"
if mode == 'train':
assert not max_iter is None
n_train_imgs = ims_per_gpu * dist.get_world_size() * max_iter
sampler = RepeatedDistSampler(ds, n_train_imgs, shuffle=shuffle)
else:
sampler = torch.utils.data.distributed.DistributedSampler(
ds, shuffle=shuffle)
batchsampler = torch.utils.data.sampler.BatchSampler(
sampler, batchsize, drop_last=drop_last
)
dl = DataLoader(
ds,
batch_sampler=batchsampler,
num_workers=4,
pin_memory=True,
)
else:
dl = DataLoader(
ds,
batch_size=batchsize,
shuffle=shuffle,
drop_last=drop_last,
num_workers=4,
pin_memory=True,
)
return dl
if __name__ == "__main__":
from tqdm import tqdm
from torch.utils.data import DataLoader
ds = CityScapes('./data/', mode='val')
dl = DataLoader(ds,
batch_size = 4,
shuffle = True,
num_workers = 4,
drop_last = True)
for imgs, label in dl:
print(len(imgs))
for el in imgs:
print(el.size())
break