-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_ct_recon2.py
268 lines (207 loc) · 11.2 KB
/
train_ct_recon2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import argparse
import shutil
import torch
import torch.nn as nn
import torchvision
import torchvision.utils as vutils
import torch.backends.cudnn as cudnn
import tensorboardX
from torch.autograd import grad
from torch_radon import Radon
from prior_utils import *
import numpy as np
from tqdm import tqdm
from networks import Positional_Encoder, FFN, SIREN
from utils import get_config, prepare_sub_folder, get_data_loader, ct_parallel_project_2d_batch
torch.cuda.set_device(3)
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='', help='Path to the config file.')
parser.add_argument('--output_path', type=str, default='.', help="outputs path")
parser.add_argument('--pretrain', action='store_true', help="load pretrained model weights")
parser.add_argument('--slice', type=int, default=None, help="outputs path")
# Load experiment setting
opts = parser.parse_args()
config = get_config(opts.config)
max_iter = config['max_iter']
recon_name = config['recon_name']
reg = config['reg']
PINER_prior_path = '/data/bowen/SparseReconstruction/3d-ct-full-dose/PINERprior/'
ind = int(config['prior_index'])
############testing noise###############
# noise = np.load("/data/bowen/SparseReconstruction/3d-ct-full-dose/noise.npy")[ind:(ind+1),:,:,0] #1,25,256,1
# noise = np.load('features_and_data/simulated_noise.npy') ####gaussian noise for unet
# noise = np.load('features_and_data/simulated_noise_large.npy') ####gaussian noise for dncnn
noise = np.load('features_and_data/lowdose_noise_unet.npy')
noise = noise.swapaxes(1,2)
noise = noise[ind:(ind+1), :,:] #1, 25, 256
print(np.mean(noise**2), noise.shape)
noise = noise*256
########################################
#############load prior image####################
# prior = np.load('/data/bowen/SparseReconstruction/3d-ct-full-dose/cnn_recon_test/cnn_recon_test' + str(ind) + '.npy')
# prior = np.load('/data/bowen/SparseReconstruction/3d-ct-full-dose/cnn_recon_test2/cnn_recon_test' + str(ind) + '.npy')
# prior = np.load('/data/bowen/SparseReconstruction/3d-ct-full-dose/adaptive_prior/img'+str(ind) + 'npy.npy')
# prior = np.load(PINER_prior_path + 'adapted_input' + str(ind) + '.npy') ##unet adp
# prior = np.load(PINER_prior_path + 'adapted_input' + str(ind) + 'noisy_redo.npy')
# prior = np.load(PINER_prior_path + 'adapted_output' + str(ind) + '_lowdosenoise_unet.npy') ###unet low dose
# prior = np.load(PINER_prior_path + 'adapted_output' + str(ind) + '_lowdosenoise_dncnn.npy') ###unet low dose
prior = np.load(PINER_prior_path + 'adapted_input' + str(ind) + '_robust_continuous.npy')
prior = prior.reshape((1,256,256,1))
# prior = np.load("/data/bowen/SparseReconstruction/3d-ct-full-dose/cnn_recon/prior" + str(ind) + ".npy")
################################################################################
cudnn.benchmark = True
# Setup output folder
output_folder = os.path.splitext(os.path.basename(opts.config))[0]
if opts.pretrain:
output_subfolder = config['data'] + '_pretrain'
else:
output_subfolder = config['data']
model_name = os.path.join(output_folder, output_subfolder)
if not(config['encoder']['embedding'] == 'none'):
model_name += '_scale{}_size{}'.format(config['encoder']['scale'], config['encoder']['embedding_size'])
print(model_name)
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.output_path + "/logs", model_name))
output_directory = os.path.join(opts.output_path + "/outputs", model_name)
checkpoint_directory, image_directory = prepare_sub_folder(output_directory)
shutil.copy(opts.config, os.path.join(output_directory, 'config.yaml')) # copy config file to output folder
# Setup input encoder:
encoder = Positional_Encoder(config['encoder'])
# Setup model
if config['model'] == 'SIREN':
model = SIREN(config['net'])
elif config['model'] == 'FFN':
model = FFN(config['net'])
else:
raise NotImplementedError
model.cuda(3)
model.train()
# Load pretrain model
if opts.pretrain:
model_path = config['pretrain_model_path']
state_dict = torch.load(model_path)
model.load_state_dict(state_dict['net'])
encoder.B = state_dict['enc']
print('Load pretrain model: {}'.format(model_path))
# Setup optimizer
if config['optimizer'] == 'Adam':
optim = torch.optim.Adam(model.parameters(), lr=config['lr'], betas=(config['beta1'], config['beta2']), weight_decay=config['weight_decay'])
else:
NotImplementedError
# Setup loss function
if config['loss'] == 'L2':
loss_fn = torch.nn.MSELoss()
elif config['loss'] == 'L1':
loss_fn = torch.nn.L1Loss()
else:
NotImplementedError
# Setup data loader
print('Load image: {}'.format(config['img_path']))
data_loader = get_data_loader(config['data'], config['img_path'], config['img_size'], -1, train=True, batch_size=config['batch_size'])
proj_noise = torch.from_numpy(noise).to(dtype = torch.float32).cuda(3)
prior = torch.from_numpy(prior).to(dtype = torch.float32).cuda(3)
angles = np.linspace(0, np.pi, config['num_projs'], endpoint=False)
radon = Radon(256, angles, clip_to_circle=True)
for it, (grid, image) in enumerate(data_loader):
print(type(grid), type(image))
# Input coordinates (x,y) grid and target image
grid = grid.cuda(3) # [bs, h, w, 2], [0, 1]
image = image.cuda(3) # [bs, h, w, c], [0, 1]
print(grid.shape, image.shape)
projs = radon.forward(image[:,:,:,0])
sinogram = (projs + proj_noise).detach().cpu().numpy()[0]/256
noise_level = noise_estimate(sinogram)
if noise_level < 1.5e-3:
noise_level *= .9
print(noise_level)
test_data = (grid, image)
train_data = (grid, projs)
# Train model
for iterations in range(max_iter):
model.train()
optim.zero_grad()
input_xy = train_data[0]
train_embedding = encoder.embedding(input_xy) # [B, H, W, embedding*2]
train_output = model(train_embedding) # [B, H, W, 3]
train_projs = radon.forward(train_output[:,:,:,0])
train_loss = 0
# # ###########################TEST SPARSITY CONSTRAINT METHOD#############################################
if reg == 'lasso':
recovered = train_output + prior
res_dx = recovered[:,:,1:,0] - recovered[:,:,:-1,0]
res_dy = recovered[:,1:,:,0] - recovered[:,:-1,:,0]
# print('using lasso')
####1.5, 3,,,,0.75, 1.5
# train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1]) +5e-5*256**2*3*torch.mean(torch.abs(train_output))
train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1]) +5e-5*256**2*1.5*torch.mean(torch.abs(train_output)) + \
5e-5*256**2*3*(torch.mean(torch.abs(res_dx)) + torch.mean(torch.abs(res_dy)))
# train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1]) +5e-5*256**2*1.5*(torch.mean(torch.abs(res_dx)) + torch.mean(torch.abs(res_dy)))
elif reg == 'nerpdirect':
res = train_output - prior
res_dx = res[:,:,1:,0] - res[:,:,:-1,0]
res_dy = res[:,1:,:,0] - res[:,:-1,:,0]
train_loss = 0.5*loss_fn(train_projs + proj_noise, train_data[1])
# + 5e-5*256**2*3*(torch.mean(torch.abs(res_dx)) + torch.mean(torch.abs(res_dy)))
elif reg == 'lasso_ata':
train_loss = 0.5*loss_fn(radon.backprojection(train_projs+proj_noise), radon.backprojection(train_data[1])) + 5e-5*torch.mean(torch.abs(train_output)**2)
elif reg == 'ridge_ata':
train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1]) + 5e-5*0*torch.mean(train_output**2)
elif reg == 'priorcnn':
train_loss = 0.5*loss_fn(train_projs + proj_noise, train_data[1]) + 5e-5*256**2*3*torch.mean(torch.abs(prior - train_output))
elif reg == 'ablation':
mse_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1])/256/256
train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1])/256
else:
recovered = train_output
res_dx = recovered[:,:,1:,0] - recovered[:,:,:-1,0]
res_dy = recovered[:,1:,:,0] - recovered[:,:-1,:,0]
mse_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1])/256/256
train_loss = 0.5*loss_fn(train_projs+proj_noise, train_data[1])/256 + 5e-5*3*256*torch.mean(torch.abs(train_output - prior))
# + 5e-5*256*1.5*(torch.mean(torch.abs(res_dx)) + torch.mean(torch.abs(res_dy)))
###hyperparameters not only depends on noise level but also on some other stuff
# train_loss.backward()
# optim.step()
# Compute training psnr
if iterations == 0 or (iterations + 1) % config['log_iter'] == 0:
train_psnr = -10 * torch.log10(2 * mse_loss).item()
# train_loss2 = train_loss.item()
train_loss2 = mse_loss.item()
# if train_loss2 < 4.5e-6*(.80)*1/9:
if train_loss2 < noise_level**2/2*.9:
# if train_loss2 < noise_level**2/2*1:
# if train_loss2 < noise_level**2/2*.85:
with torch.no_grad():
test_embedding = encoder.embedding(test_data[0])
test_output = model(test_embedding)
np.save(recon_name, test_output.cpu().numpy())
break
train_writer.add_scalar('train_loss', train_loss2, iterations + 1)
train_writer.add_scalar('train_psnr', train_psnr, iterations + 1)
print("[Iteration: {}/{}] Train loss: {:.4g} | Train psnr: {:.4g}".format(iterations + 1, max_iter, train_loss2, train_psnr))
# Compute testing psnr
if iterations == 0 or (iterations + 1) % config['val_iter'] == 0 or iterations == (max_iter-1):
model.eval()
with torch.no_grad():
test_embedding = encoder.embedding(test_data[0])
test_output = model(test_embedding)
print(np.max(test_output.cpu().numpy()), "peak signal value")
np.save(recon_name, test_output.cpu().numpy())
np.save("ground_truth_residual.npy", test_data[1].cpu().numpy())
# test_loss = 0.5 * loss_fn(test_output, test_data[1])######previously
test_loss = 0.5*torch.nn.MSELoss()(test_output, test_data[1])
test_psnr = - 10 * torch.log10(2 * test_loss).item()
test_loss = test_loss.item()
train_writer.add_scalar('test_loss', test_loss, iterations + 1)
train_writer.add_scalar('test_psnr', test_psnr, iterations + 1)
# Must transfer to .cpu() tensor firstly for saving images
torchvision.utils.save_image(test_output.cpu().permute(0, 3, 1, 2).data, os.path.join(image_directory, "recon_{}_{:.4g}dB.png".format(iterations + 1, test_psnr)))
print("[Validation Iteration: {}/{}] Test loss: {:.4g} | Test psnr: {:.4g}".format(iterations + 1, max_iter, test_loss, test_psnr))
train_loss.backward()
optim.step()
# Save final model
model_name = os.path.join(checkpoint_directory, 'model_%06d.pt' % (iterations + 1))
torch.save({'net': model.state_dict(), \
'enc': encoder.B, \
'opt': optim.state_dict(), \
}, model_name)
torch.cuda.empty_cache()