@@ -55,8 +55,7 @@ _≅_ : ∀ {a b} {α : Level a} {β : Level b} {A : Univ α} {B : Univ β} ->
55
55
56
56
data Desc {i b} {ι : Level i} (I : Type ι) (β : Level b) : Set where
57
57
var : ⟦ I ⟧ -> Desc I β
58
- π : ∀ {a} {α : Level a} .{{_ : a ≤ₘ b}}
59
- -> (A : Univ α) -> (⟦ A ⟧ -> Desc I β) -> Desc I β
58
+ π : ∀ {a} {α : Level a} .{{_ : a ≤ₘ b}} -> (A : Univ α) -> (⟦ A ⟧ -> Desc I β) -> Desc I β
60
59
_⊛_ : Desc I β -> Desc I β -> Desc I β
61
60
62
61
⟦_⟧ᵈ : ∀ {i a} {ι : Level i} {α : Level a} {I : Type ι}
@@ -97,15 +96,12 @@ data Univ where
97
96
nat : Type₀
98
97
enum : ℕ -> Type₀
99
98
univ : ∀ {a} -> (α : Level a) -> Type α
100
- σ : ∀ {a b} {α : Level a} {β : Level b}
101
- -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔ β)
102
- π : ∀ {a b} {α : Level a} {β : Level b}
103
- -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔₀ β)
99
+ σ : ∀ {a b} {α : Level a} {β : Level b} -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔ β)
100
+ π : ∀ {a b} {α : Level a} {β : Level b} -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔₀ β)
104
101
desc : ∀ {a i} {ι : Level i} -> Type ι -> (α : Level a) -> Type α
105
102
imu : ∀ {i a} {ι : Level i} {α : Level a} {I : Type ι} -> Desc I α -> ⟦ I ⟧ -> Univ α
106
103
107
- ⟦_⟧ⁱ : ∀ {a b} {α : Level a} {β : Level b} {A : Univ α}
108
- -> (⟦ A ⟧ -> Univ β) -> ⟦ A ⟧ -> Set
104
+ ⟦_⟧ⁱ : ∀ {a b} {α : Level a} {β : Level b} {A : Univ α} -> (⟦ A ⟧ -> Univ β) -> ⟦ A ⟧ -> Set
109
105
⟦ B ⟧ⁱ x = ⟦ B x ⟧
110
106
111
107
⟦ bot ⟧ = ⊥
@@ -243,8 +239,8 @@ mu D = imu D triv
243
239
liftDesc : ∀ {i a b} {ι : Level i} {α : Level a} {β : Level b} {I : Type ι} .{{_ : a ≤ₘ b}}
244
240
-> Desc I α -> Desc I β
245
241
liftDesc (var i) = var i
246
- liftDesc {b = b} {{q₁}} (π {c} {{q₂}} A D) = π
247
- {{pright (pcong (c ⊔ₘ_) q₁) (ptrans (pcong (b ⊔ₘ_) q₂) q₁)}} A λ x -> liftDesc (D x)
242
+ liftDesc {b = b} {{q₁}} (π {c} {{q₂}} A D) =
243
+ π {{pright (pcong (c ⊔ₘ_) q₁) (ptrans (pcong (b ⊔ₘ_) q₂) q₁)}} A λ x -> liftDesc (D x)
248
244
liftDesc (D ⊛ E) = liftDesc D ⊛ liftDesc E
249
245
250
246
var-inj : ∀ {i b} {ι : Level i} {I : Type ι} {β : Level b} {j₁ j₂ : ⟦ I ⟧}
0 commit comments