Skip to content

Commit 59a4e66

Browse files
committed
removed instance mess
1 parent a09998d commit 59a4e66

File tree

5 files changed

+28
-36
lines changed

5 files changed

+28
-36
lines changed

Coerce.agda

+7-7
Original file line numberDiff line numberDiff line change
@@ -160,14 +160,14 @@ mutual
160160
π[ ptrans (pright (pcong (a ⊔ₘ_) qo) q) qa ] A (coerceUDesc qI qo qa ∘ D)
161161
coerceUDesc qI qo qa (D ⊛ E) = coerceUDesc qI qo qa D ⊛ coerceUDesc qI qo qa E
162162

163-
coerceSem : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂} {ω₁ : Level o₁} {ω₂ : Level o₂}
164-
{{β₁ : Level b₁}} {{β₂ : Level b₂}}
163+
coerceSem : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂}
164+
{ω₁ : Level o₁} {ω₂ : Level o₂} {β₁ : Level b₁} {β₂ : Level b₂}
165165
{I₁ : Type i₁} {I₂ : Type i₂}
166166
{F₁ : ⟦ I₁ ⟧ -> Univ β₁} {F₂ : ⟦ I₂ ⟧ -> Univ β₂}
167167
-> (D₁ : UDesc I₁ ω₁ a₁)
168168
-> (D₂ : UDesc I₂ ω₂ a₂)
169169
-> ⟦ D₁ ≅ᵈ D₂ ⟧
170-
-> ⟦ F₁ ≅ F₂ ⟧
170+
-> ⟦ F₁ ≅ F₂ ⟧
171171
-> (⟦ D₁ ⟧ᵈ λ x₁ -> ⟦ F₁ x₁ ⟧)
172172
-> (⟦ D₂ ⟧ᵈ λ x₂ -> ⟦ F₂ x₂ ⟧)
173173
coerceSem (var′ j₁) (var′ j₂) qj qF x = coerce (qF j₁ j₂ qj) x
@@ -184,8 +184,8 @@ mutual
184184
coerceSem (_ ⊛ _ ) (var′ _) ()
185185
coerceSem (_ ⊛ _ ) (π′ _ _) ()
186186

187-
coerceExtend : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂} {ω₁ : Level o₁} {ω₂ : Level o₂}
188-
{{β₁ : Level b₁}} {{β₂ : Level b₂}}
187+
coerceExtend : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂}
188+
{ω₁ : Level o₁} {ω₂ : Level o₂} {β₁ : Level b₁} {β₂ : Level b₂}
189189
{I₁ : Type i₁} {I₂ : Type i₂}
190190
{F₁ : ⟦ I₁ ⟧ -> Univ β₁} {F₂ : ⟦ I₂ ⟧ -> Univ β₂} {j₁ j₂}
191191
-> (D₁ : UDesc I₁ ω₁ a₁)
@@ -209,11 +209,11 @@ mutual
209209

210210
coerceMu : {i₁ i₂ a₁ a₂} {α₁ : Level a₁} {α₂ : Level a₂}
211211
{I₁ : Type i₁} {I₂ : Type i₂} {D₁ : Desc I₁ α₁} {D₂ : Desc I₂ α₂} {j₁ j₂}
212-
-> ⟦ D₁ ≊ᵈ D₂ ⟧ -> ⟦ j₁ ≅ j₂ ⟧ -> μ D₁ j₁ -> μ D₂ j₂
212+
-> ⟦ D₁ ≊ᵈ D₂ ⟧ -> ⟦ j₁ ≅ j₂ ⟧ -> μ D₁ j₁ -> μ D₂ j₂
213213
coerceMu {α₁ = lzero } {lzero } qD qj (node e) =
214214
node (unwrap (proj₁ (qD _ _ qj) (wrap e)))
215215
coerceMu {α₁ = lsuc _} {lsuc _} {D₁ = D₁} {D₂} qD qj (node e) =
216-
node (coerceExtend {{lsuc _}} {{lsuc _}} D₁ D₂ qD (λ _ _ -> _,_ qD) qj e)
216+
node (coerceExtend D₁ D₂ qD (λ _ _ -> _,_ qD) qj e)
217217
coerceMu {α₁ = lzero } {lsuc _} ()
218218
coerceMu {α₁ = lsuc _} {lzero } ()
219219

Core.agda

+15-16
Original file line numberDiff line numberDiff line change
@@ -9,9 +9,12 @@ infixr 2 _⇒_ _⊛_
99
infix 3 _≈_ _≃_ _≅_ _≅ᵉ_ _≅ᵈ_ _≊ᵈ_ _≅s_ _≅e_
1010

1111
data Level : MetaLevel -> Set where
12-
instance
13-
lzero : Level lzeroₘ
14-
lsuc : a -> Level (lsucₘ a)
12+
lzero : Level lzeroₘ
13+
lsuc : a -> Level (lsucₘ a)
14+
15+
data SomeLevel : Set where
16+
meta : MetaLevel -> SomeLevel
17+
level : {a} -> Level a -> SomeLevel
1518

1619
natToMetaLevel :-> MetaLevel
1720
natToMetaLevel 0 = lzeroₘ
@@ -35,15 +38,14 @@ _⊔₀_ : ∀ {a b} -> Level a -> (β : Level b) -> Level (a ⊔ₘ₀ β)
3538
α ⊔₀ lzero = lzero
3639
α ⊔₀ lsuc b = α ⊔ lsuc b
3740

41+
meta-inj : {a b} -> meta a ≡ meta b -> a ≡ b
42+
meta-inj prefl = prefl
43+
3844
Enum :-> Set
3945
Enum 0 =
4046
Enum 1 =
4147
Enum (suc (suc n)) = Maybe (Enum (suc n))
4248

43-
data SomeLevel : Set where
44-
meta : MetaLevel -> SomeLevel
45-
level : {a} -> Level a -> SomeLevel
46-
4749
data Univ : {a} -> Level a -> Set
4850

4951
Prop = Univ lzero
@@ -87,10 +89,10 @@ data Univ where
8789
-> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔ β)
8890
π : {a b} {α : Level a} {β : Level b}
8991
-> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔₀ β)
90-
udesc : {o i} -> Type i -> Level o -> a -> {{α : Level a}} -> Type a
91-
extend : {i o a b} {ω : Level o} {{β : Level b}} {I : Type i}
92+
udesc : {o i} -> Type i -> Level o -> a -> Type a
93+
extend : {i o a b} {ω : Level o} {β : Level b} {I : Type i}
9294
-> UDesc I ω a -> (⟦ I ⟧ -> Univ β) -> ⟦ I ⟧ -> Univ β
93-
imu : {i a} {{α : Level a}} {I : Type i} -> Desc I α -> ⟦ I ⟧ -> Univ α
95+
imu : {i a} {α : Level a} {I : Type i} -> Desc I α -> ⟦ I ⟧ -> Univ α
9496

9597
record μ {i a} {α : Level a} {I : Type i} (D : Desc I α) i : Set where
9698
inductive
@@ -121,7 +123,7 @@ _⇒_ : ∀ {a b} {α : Level a} {β : Level b} -> Univ α -> Univ β -> Univ (
121123
A ⇒ B = π A λ _ -> B
122124

123125
desc : {a i} -> Type i -> Level a -> Type a
124-
desc I α = udesc I α _ {{α}}
126+
desc {a} I α = udesc I α a
125127

126128
_≟ⁿ_ :->-> Prop
127129
0 ≟ⁿ 0 = top
@@ -168,7 +170,7 @@ imu D₁ i₁ ≃ imu D₂ i₂ = D₁ ≊ᵈ D₂ & i₁ ≅
168170
_ ≃ _ = bot
169171

170172
_≅e_ : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂}
171-
{ω₁ : Level o₁} {ω₂ : Level o₂} {{β₁ : Level b₁}} {{β₂ : Level b₂}}
173+
{ω₁ : Level o₁} {ω₂ : Level o₂} {β₁ : Level b₁} {β₂ : Level b₂}
172174
{I₁ : Type i₁} {I₂ : Type i₂} {F₁ : ⟦ I₁ ⟧ -> Univ β₁} {F₂ : ⟦ I₂ ⟧ -> Univ β₂} {j₁ j₂}
173175
-> (∃ λ (D₁ : UDesc I₁ ω₁ a₁) -> Extend D₁ (λ x₁ -> ⟦ F₁ x₁ ⟧) j₁)
174176
-> (∃ λ (D₂ : UDesc I₂ ω₂ a₂) -> Extend D₂ (λ x₂ -> ⟦ F₂ x₂ ⟧) j₂)
@@ -188,7 +190,7 @@ _≅_ {A = imu D₁ _ } {imu D₂ _ } a₁ a₂ = let node e₁ = a₁;
188190
_≅_ _ _ = bot
189191

190192
_≅s_ : {i₁ i₂ o₁ o₂ a₁ a₂ b₁ b₂}
191-
{ω₁ : Level o₁} {ω₂ : Level o₂} {{β₁ : Level b₁}} {{β₂ : Level b₂}}
193+
{ω₁ : Level o₁} {ω₂ : Level o₂} {β₁ : Level b₁} {β₂ : Level b₂}
192194
{I₁ : Type i₁} {I₂ : Type i₂} {F₁ : ⟦ I₁ ⟧ -> Univ β₁} {F₂ : ⟦ I₂ ⟧ -> Univ β₂}
193195
-> (∃ λ (D₁ : UDesc I₁ ω₁ a₁) -> ⟦ D₁ ⟧ᵈ λ x₁ -> ⟦ F₁ x₁ ⟧)
194196
-> (∃ λ (D₂ : UDesc I₂ ω₂ a₂) -> ⟦ D₂ ⟧ᵈ λ x₂ -> ⟦ F₂ x₂ ⟧)
@@ -218,9 +220,6 @@ module _ {i o} {ω : Level o} {I : Type i} where
218220
-> (A : Univ α) -> UDesc I ω (a ⊔ₘ o) -> UDesc I ω (a ⊔ₘ o)
219221
A ⇒ᵈ D = πᵈ A λ _ -> D
220222

221-
meta-inj : {a b} -> meta a ≡ meta b -> a ≡ b
222-
meta-inj prefl = prefl
223-
224223
pattern #₀ p = node (tag nothing , p)
225224
pattern #₁ p = node (tag (just nothing) , p)
226225
pattern #₂ p = node (tag (just (just nothing)) , p)

Data/List.agda

+5-5
Original file line numberDiff line numberDiff line change
@@ -30,13 +30,13 @@ foldList f = elimList _ f
3030
length : {a} {A : Type a} -> List A ->
3131
length = foldList (const suc) 0
3232

33-
icmu : {i} {{a}} {I : Type i} -> List (desc I (lsuc a)) -> ⟦ I ⟧ -> Type a
33+
icmu : {i a} {I : Type i} -> List (desc I (lsuc a)) -> ⟦ I ⟧ -> Type a
3434
icmu {I = I} Ds = imu $ πᵈ (enum (length Ds)) (go Ds ∘ detag) where
35-
go : {a} -> (Ds : List (desc I (lsuc a))) -> Enum (length Ds) -> Desc I (lsuc a)
35+
go : {a} {A : Type a} -> (xs : List A) -> Enum (length xs) -> ⟦ A ⟧
3636
go [] ()
37-
go (D ∷ []) tt = D
38-
go (DEDs) nothing = D
39-
go (DEDs) (just e) = go (EDs) e
37+
go (x ∷ []) tt = x
38+
go (xyxs) nothing = x
39+
go (xyxs) (just e) = go (yxs) e
4040

4141
cmu : {a} -> List (desc unit (lsuc a)) -> Type a
4242
cmu Ds = icmu Ds triv

Data/Vec.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ open import OTT.Main
44

55
infixr 5 _∷ᵥ_
66

7-
vec : {{a}} -> Type a ->-> Type a
7+
vec : {a} -> Type a ->-> Type a
88
vec A = icmu
99
$ var 0
1010
∷ (πᵈ nat λ n -> A ⇒ᵈ var n ⊛ var (suc n))

Data/W.agda

-7
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,6 @@ module OTT.Data.W where
22

33
open import OTT.Main
44

5-
-- instance
6-
-- level-⊔ : ∀ {a b} {{α : Level a}} {{β : Level b}} -> Level (a ⊔ₘ b)
7-
-- level-⊔ {{α}} {{β}} = α ⊔ β
8-
9-
-- w : ∀ {a b} {α : Level a} {β : Level b} -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔ β)
10-
-- w {α = α} {β} A B = mu {{_}} (πᵈ {{α ⊔ β}} A λ x -> (_⇒ᵈ_ {{α ⊔ β}} (B x) pos) ⊛ pos)
11-
125
w : {a b} {α : Level a} {β : Level b} -> (A : Univ α) -> (⟦ A ⟧ -> Univ β) -> Univ (α ⊔ β)
136
w A B = mu (πᵈ A λ x -> (B x ⇒ᵈ pos) ⊛ pos)
147

0 commit comments

Comments
 (0)