Skip to content

Commit 1ca2553

Browse files
authored
Update index.html
1 parent 5a44616 commit 1ca2553

File tree

1 file changed

+15
-8
lines changed

1 file changed

+15
-8
lines changed

Tensor-GOT-Polymer/index.html

Lines changed: 15 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -167,16 +167,20 @@ <h2>Instalation of Tensorflow</h2>
167167
duration="10">
168168
<p>
169169
<h2>Downloading the CodeLab</h2>
170+
<p><a href="https://github.com/codelab-tf-got/code/archive/master.zip" target="_blank"><paper-button class="colored" raised><iron-icon icon="file-download"></iron-icon>Download source code</paper-button></a></p>
170171
<p>You can download the code and the data below. We suggest you to download both and put them in the same folder . We will be explaining afterwards in each model which part of the codes matches with each part of wide + deep learning model .
171172
Once you have it downloaded into your computer, you can play with it . </p>
172173
<h2 class="checklist">CodeLab Structure</h2>
173174
<ul>
174175
<img src="Download_thecodelab.jpg" alt="network">
175-
<li>Download the code and the data_set and put it on a folder. It should contain the file wide+deep_Tensorflow_GOT and the file GOT_data.csv </li>
176-
<li>Open the file and change the path in your dataset : data_set = ‘your_path_here’ </li>
177-
<li>In console, execute the program :~ $ python 'program' --training_mode learn_runner --model_dir /Base directory for output models --model_type 'wide_n_deep' --steps 200</li>
178-
<li>In console, execute Tensorflow :~ $ tensorboard --logdir =/tmp/model/ </li>
179-
<li>A fair amount of time</li>
176+
<li>Download the code and the data_set and put it on a folder.
177+
<p>It should contain the file wide+deep_Tensorflow_GOT and the file GOT_data.csv </p> </li>
178+
<li>Open the file and change the path in your dataset :
179+
<p>data_set = ‘your_path_here’ </p> </li>
180+
<li>In console, execute the program :
181+
<p>~ $ python 'program' --training_mode learn_runner --model_dir /Base directory for output models --model_type 'wide_n_deep' --steps 200 </p></li>
182+
<li>In console, execute Tensorflow :
183+
<p>~ $ tensorboard --logdir =/tmp/model/ </p> </li>
180184
</ul>
181185
</google-codelab-step>
182186
<google-codelab-step
@@ -186,7 +190,8 @@ <h2 class="checklist">CodeLab Structure</h2>
186190
<p>
187191
<h2>Network Structure</h2>
188192
<p> During the next session we will explain the architecture of the Wid+Deep learning model having into consideration the published paper by Google. We also recommend the <a href="https://www.youtube.com/watch?v=NV1tkZ9Lq48&list=PLOU2XLYxmsIKGc_NBoIhTn2Qhraji53cv&index=17" target="_blank" rel="noopener">talk</a> given by Heng-Tze Cheng at Tensorflow Dev Summit 2017 . </p>
189-
<img src="Wide+DeepLearning.gif" alt="network">
193+
<img src="Wide+DeepLearning.gif" alt="network">
194+
<p> Image from wide+deep tutorial </p>
190195
<p> The aim of this model is to combine the benefits of memorization+generalization models, in wich wide model is directly relevant to features and deep model improves the diversity of recommended systems.
191196
The abstraction of concepts in this text comes from the paper wide + deep learning for recommender systems <a href="https://arxiv.org/pdf/1606.07792.pdf" target="_blank" rel="noopener">paper</a></p>
192197
<p>With less feature engineering, deep neural networks can generalize better to unseen feature combinations through low-dimensional dense embeddings learned for the sparse features. However, deep neural networks with embeddings can over-generalize
@@ -230,7 +235,8 @@ <h2>Linear classiffier: Memorization</h2>
230235
We execute the linear classifier
231236

232237
Here the design of the net comes with the combination of features that can combine the information in order to offer a suitable conclusion </p>
233-
<img src="WideDEF.gif" alt="crossing_narrow_sea">
238+
<img src="WideDEF.gif" alt="crossing_narrow_sea">
239+
<p> Image from wide+deep tutorial </p>
234240
<pre><code>
235241
if FLAGS.model_type == "wide":
236242
m = tf.contrib.learn.LinearClassifier(model_dir=model_dir,
@@ -243,6 +249,7 @@ <h2>Linear classiffier: Memorization</h2>
243249
duration="10">
244250
<h2>Deep layer</h2>
245251
<img src="Deep.gif" alt="netkork">
252+
<p> Image from wide+deep tutorial </p>
246253
<p>Generalization - Deep Model- the model is a Feedfoward neural network that works with categorical features . there exist Transitivity of correlation and explores feature combinations that have never or rarely occurred in the past. It improves the diversity of recommended items . This generalization can be added by using features that are less granular .
247254
So at the end this model is great for combining two different models of classification using neural Networks. You can see how this model has been working with </p>
248255
<h2>Deep layer</h2>
@@ -307,7 +314,7 @@ <h2>Conclusions</h2>
307314
<p>Take this feedback form to tell us more about how useful it was and dig into it if you want to know more </p>
308315

309316
<img src="5_Comic.png" alt="TensorFlow Game of Thrones">
310-
<p>Code and Review : </p> <a href="https://github.com/ssaavedra" target="_blank" rel="noopener">Santiago Saavedra</a>
317+
<p>Code : </p> <a href="https://github.com/ssaavedra" target="_blank" rel="noopener">Santiago Saavedra</a>
311318
<p>Codelab documentation and images : </p> <a href="https://github.com/SoyGema" target="_blank" rel="noopener">Gema Parreño</a>
312319
</body>
313320
</html>

0 commit comments

Comments
 (0)