-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathmain.lua
67 lines (57 loc) · 1.97 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
----------------------------------------------------------------------
-- Train a network for semantic segmentation
--
-- Abhishek Chaurasia, Eugenio Culurciello
----------------------------------------------------------------------
require 'pl'
require 'nn'
io.write('\27[0;0f\27[0J')
----------------------------------------------------------------------
-- Local repo files
local opts = require 'opts'
opt = opts.parse(arg)
-- nb of threads and fixed seed (for repeatable experiments)
-- torch.setnumthreads(opt.threads)
torch.manualSeed(12)
torch.setdefaulttensortype('torch.FloatTensor')
-- print('==> switching to CUDA')
require 'cudnn'
require 'cunn'
cutorch.setDevice(opt.devid)
print('\n\27[32mModels will be saved in \27[0m\27[4m' .. opt.save .. '\27[0m')
os.execute('mkdir -p ' .. opt.save)
if opt.saveAll then
os.execute('mkdir -p ' .. opt.save .. '/all')
end
----------------------------------------------------------------------
local data, chunks, ft
if opt.dataset == 'cv' then
data = require 'data/loadCamVid'
elseif opt.dataset == 'cs' then
data = require 'data/loadCityscapes'
else
error ("Dataset loader not found. (Available options are: cv/cs")
end
local filename = paths.concat(opt.save,'opt.txt')
local file = io.open(filename, 'w')
for i,v in pairs(opt) do
file:write(tostring(i)..' : '..tostring(v)..'\n')
end
file:close()
----------------------------------------------------------------------
local epoch = 1
t = paths.dofile(opt.model)
local train = require 'train'
local test = require 'test'
print('\27[31m\27[4m\nTraining and testing started\27[0m')
print('[batchSize = ' .. opt.batchSize .. ']')
while epoch < opt.maxepoch do
print(string.format('\27[31m\27[4m\nEpoch # %d\27[0m', epoch))
print('==> Training:')
local trainConf, model, loss = train(data.trainData, opt.dataClasses, epoch)
print('==> Testing:')
test(data.testData, opt.dataClasses, epoch, trainConf, model, loss )
trainConf = nil
collectgarbage()
epoch = epoch + 1
end