forked from tensorforce/tensorforce
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathale.py
131 lines (108 loc) · 5.13 KB
/
ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2017 reinforce.io. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Arcade Learning Environment execution
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import logging
import os
import sys
import time
from tensorforce import TensorForceError
import json
from tensorforce.agents import Agent
from tensorforce.execution import Runner
from tensorforce.contrib.ale import ALE
def main():
parser = argparse.ArgumentParser()
parser.add_argument('rom', help="File path of the rom")
parser.add_argument('-a', '--agent-config', help="Agent configuration file")
parser.add_argument('-n', '--network-spec', default=None, help="Network specification file")
parser.add_argument('-fs', '--frame-skip', help="Number of frames to repeat action", type=int, default=1)
parser.add_argument('-rap', '--repeat-action-probability', help="Repeat action probability", type=float, default=0.0)
parser.add_argument('-lolt', '--loss-of-life-termination', help="Loss of life counts as terminal state", action='store_true')
parser.add_argument('-lolr', '--loss-of-life-reward', help="Loss of life reward/penalty. EX: -1 to penalize", type=float, default=0.0)
parser.add_argument('-ds', '--display-screen', action='store_true', default=False, help="Display emulator screen")
parser.add_argument('-e', '--episodes', type=int, default=50000, help="Number of episodes")
parser.add_argument('-t', '--max-timesteps', type=int, default=2000, help="Maximum number of timesteps per episode")
parser.add_argument('-s', '--save', help="Save agent to this dir")
parser.add_argument('-se', '--save-episodes', type=int, default=100, help="Save agent every x episodes")
parser.add_argument('-l', '--load', help="Load agent from this dir")
parser.add_argument('-D', '--debug', action='store_true', default=False, help="Show debug outputs")
args = parser.parse_args()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG) # configurable!!!
logger.addHandler(logging.StreamHandler(sys.stdout))
environment = ALE(args.rom, frame_skip=args.frame_skip,
repeat_action_probability=args.repeat_action_probability,
loss_of_life_termination=args.loss_of_life_termination,
loss_of_life_reward=args.loss_of_life_reward,
display_screen=args.display_screen)
if args.agent_config is not None:
with open(args.agent_config, 'r') as fp:
agent_config = json.load(fp=fp)
else:
raise TensorForceError("No agent configuration provided.")
if args.network_spec is not None:
with open(args.network_spec, 'r') as fp:
network_spec = json.load(fp=fp)
else:
network_spec = None
logger.info("No network configuration provided.")
agent = Agent.from_spec(
spec=agent_config,
kwargs=dict(
states=environment.states,
actions=environment.actions,
network=network_spec
)
)
if args.debug:
logger.info("-" * 16)
logger.info("Configuration:")
logger.info(agent_config)
if args.save:
save_dir = os.path.dirname(args.save)
if not os.path.isdir(save_dir):
try:
os.mkdir(save_dir, 0o755)
except OSError:
raise OSError("Cannot save agent to dir {} ()".format(save_dir))
runner = Runner(
agent=agent,
environment=environment,
repeat_actions=1
)
report_episodes = args.episodes // 1000
if args.debug:
report_episodes = 1
def episode_finished(r):
if r.episode % report_episodes == 0:
sps = r.timestep / (time.time() - r.start_time)
logger.info("Finished episode {ep} after {ts} timesteps. Steps Per Second {sps}".format(ep=r.episode, ts=r.timestep, sps=sps))
logger.info("Episode reward: {}".format(r.episode_rewards[-1]))
logger.info("Average of last 500 rewards: {}".format(sum(r.episode_rewards[-500:]) / 500))
logger.info("Average of last 100 rewards: {}".format(sum(r.episode_rewards[-100:]) / 100))
return True
logger.info("Starting {agent} for Environment '{env}'".format(agent=agent, env=environment))
runner.run(args.episodes, args.max_timesteps, episode_finished=episode_finished)
runner.close()
logger.info("Learning finished. Total episodes: {ep}".format(ep=runner.episode))
environment.close()
if __name__ == '__main__':
main()