forked from mlfoundations/dclm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
232 lines (193 loc) · 8.95 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import annotations
import os
import urllib.request
import tarfile
import shutil
from setuptools.command.install import install
from setuptools import setup, find_packages
from retrie.retrie import Blacklist
import pickle
import re
import nltk
import boto3
PROJECT_ROOT = os.path.dirname(__file__)
class BaselineInstall(install):
def run(self):
# Perform the standard installation
install.run(self)
# Custom setup for baseline
print("Setting up baseline requirements...")
class TrainingInstall(install):
def run(self):
install.run(self)
# Download and prepare training data
print("Downloading training data...")
nltk.download('punkt')
class EvalInstall(install):
def run(self):
install.run(self)
print("Preparing evaluation setup...")
class DevInstall(install):
def run(self):
install.run(self)
print("Setting up development environment...")
class DownloadAssetsCommand(install):
description = 'download and set up larger assets (e.g., models, banlists) after installation'
user_options = install.user_options + [
('skip-downloads=', 's', "whether to skip all downloads"),
('skip-model-downloads=', None, "whether to skip model downloads"),
('skip-banlist-downloads=', None, "whether to skip banlist downloads"),
('rw-banlist-type=', None, "whether to skip banlist downloads")
]
def initialize_options(self):
install.initialize_options(self)
self.skip_downloads = None
self.skip_model_downloads = None
self.skip_banlist_downloads = None
self.rw_banlist_type = 'curated'
def finalize_options(self):
install.finalize_options(self)
assert self.skip_downloads in [None, 'y', 'yes', '1', 't', 'true']
assert self.skip_model_downloads in [None, 'y', 'yes', '1', 't', 'true']
assert self.skip_banlist_downloads in [None, 'y', 'yes', '1', 't', 'true']
assert self.rw_banlist_type in ['curated', 'uncurated']
if self.skip_downloads:
self.skip_model_downloads = 'yes'
self.skip_banlist_downloads = 'yes'
def run(self):
# Call the parent class to perform the installation
super().run()
# Download punkt which is necessary for some mappers
nltk.download('punkt')
if not self.skip_model_downloads:
# Download the models
print("\n\nReached model downloads\n\n")
self._download_fasttext_model()
self._download_quality_models()
# Download the RefinedWeb banlists
if not self.skip_banlist_downloads:
print("\n\nReached banlist downloads\n\n")
if self.rw_banlist_type == 'curated':
self._download_curated_refinedweb_banlists()
elif self.rw_banlist_type == 'uncurated':
self._create_refinedweb_banlists()
def _download_fasttext_model(self):
url = "https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin"
MODEL_SUBDIRECTORY = "baselines/mappers/enrichers/language_id_enrichment_models"
MODEL_FILENAME = "lid.176.bin"
destination = os.path.join(PROJECT_ROOT, MODEL_SUBDIRECTORY, MODEL_FILENAME)
if not os.path.exists(destination):
os.makedirs(os.path.dirname(destination), exist_ok=True)
print(f'Downloading {url} to {destination}')
urllib.request.urlretrieve(url, destination)
print(f"Finsihed downloading {url} to {destination}")
else:
print(f'File {destination} already exists')
def _download_quality_models(self):
MODEL_SUBDIRECTORY = "baselines/mappers/enrichers/quality_prediction_enrichment_models"
# Models and their URLs
models = {
"model.bin": "https://wmtis.s3.eu-west-1.amazonaws.com/quality_prediction_model/model.bin",
"en.arpa.bin": "https://huggingface.co/edugp/kenlm/resolve/main/wikipedia/en.arpa.bin",
"en.sp.model": "https://huggingface.co/edugp/kenlm/resolve/main/wikipedia/en.sp.model"
}
for MODEL_FILENAME, url in models.items():
destination = os.path.join(PROJECT_ROOT, MODEL_SUBDIRECTORY, MODEL_FILENAME)
if not os.path.exists(destination):
print(f"Downloading {MODEL_FILENAME} to {destination}...")
os.makedirs(os.path.dirname(destination), exist_ok=True)
urllib.request.urlretrieve(url, destination)
print(f"Finished downloading {MODEL_FILENAME} to {destination}")
else:
print(f"File {destination} already exists")
def _download_curated_refinedweb_banlists(self):
CURATED_BANLIST_PATH = "baselines/mappers/banlists/refinedweb_banned_domains_curated.txt"
print("Downloading curated banlist")
if not os.path.exists(CURATED_BANLIST_PATH):
s3 = boto3.client('s3')
s3.download_file('dcnlp-west', 'refinedweb_url_banlists/refinedweb_banned_domains_curated.txt', CURATED_BANLIST_PATH)
else:
print(f"Curated banlist for refinedweb already exists at {CURATED_BANLIST_PATH}")
def _create_refinedweb_banlists(self):
UNCURATED_BANLISTS_URL = "ftp://ftp.ut-capitole.fr/pub/reseau/cache/squidguard_contrib/blacklists.tar.gz"
BANLIST_OUTPUT_DIR = "baselines/mappers/banlists"
BANNED_CATEGORIES = [
'adult',
'phishing',
'dating',
'gambling',
'filehosting',
'ddos',
'agressif',
'chat',
'mixed_adult',
'arjel'
]
if not os.path.exists(f"{BANLIST_OUTPUT_DIR}/refinedweb_banned_domains_and_urls.txt"):
print(f"Downloading {UNCURATED_BANLISTS_URL}...")
urllib.request.urlretrieve(UNCURATED_BANLISTS_URL, f"{BANLIST_OUTPUT_DIR}/blacklists.tar.gz")
print("Extracting banlists...")
with tarfile.open(f"{BANLIST_OUTPUT_DIR}/blacklists.tar.gz") as file:
file.extractall(f"{BANLIST_OUTPUT_DIR}")
print("Building banlist from target categories...")
banned_domains = []
banned_urls = []
for category in BANNED_CATEGORIES:
if os.path.exists(f"{BANLIST_OUTPUT_DIR}/blacklists/{category}/domains"):
with open(f"{BANLIST_OUTPUT_DIR}/blacklists/{category}/domains", "r") as file:
banned_domains.extend(file.read().splitlines())
if os.path.exists(f"{BANLIST_OUTPUT_DIR}/blacklists/{category}/urls"):
with open(f"{BANLIST_OUTPUT_DIR}/blacklists/{category}/urls", "r") as file:
banned_urls.extend(file.read().splitlines())
banlist = banned_domains + banned_urls
# Removes the raw downloads (with all the different categories)
os.remove(f"{BANLIST_OUTPUT_DIR}/blacklists.tar.gz")
shutil.rmtree(f'{BANLIST_OUTPUT_DIR}/blacklists')
print("Writing banlists to files...")
with open(f"{BANLIST_OUTPUT_DIR}/refinedweb_banned_domains.txt", "w") as file:
for item in banned_domains:
file.write(f"{item}\n")
with open(f"{BANLIST_OUTPUT_DIR}/refinedweb_banned_urls.txt", "w") as file:
for item in banned_urls:
file.write(f"{item}\n")
with open(f"{BANLIST_OUTPUT_DIR}/refinedweb_banned_domains_and_urls.txt", "w") as file:
for item in banlist:
file.write(f"{item}\n")
banlist = [b.lower() for b in banlist]
pattern = re.compile(Blacklist(banlist, match_substrings=True).compiled)
with open(f"{BANLIST_OUTPUT_DIR}/refinedweb_banned_domains_and_urls_regex.pkl", "wb") as file:
pickle.dump(pattern, file)
else:
print(f"File {f'{BANLIST_OUTPUT_DIR}/refinedweb_banned_domains_and_urls.txt'} already exists")
with open('requirements.txt') as f:
required = [r for r in f.read().splitlines() if 'github' not in r]
setup(
name='baselines', # Change this to your package name
version='0.0.1', # Change this to your package version
description='Description of your package', # Add a brief description
packages=find_packages(),
install_requires=required,
cmdclass={
'install': DownloadAssetsCommand,
},
)
setup(
name='your_package',
version='0.1.0',
description='Your package description',
packages=find_packages(),
install_requires=required,
extras_require={
'baselines': ['some_package>=1.0.0'],
'training': ['tensorflow>=2.0', 'keras'],
'eval': ['scikit-learn'],
'dev': ['pytest', 'sphinx']
},
cmdclass={
'install': install,
'install_baselines': BaselineInstall,
'install_training': TrainingInstall,
'install_eval': EvalInstall,
'install_dev': DevInstall
},
)