forked from RodneyFinkel/PCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pca_class.py
76 lines (60 loc) · 2.19 KB
/
pca_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import datasets
class PCA:
def fit_transform(self, X, n_components=2):
# get number of samples and components
self.n_samples = X.shape[0]
self.n_components = n_components
# standardize
self.A = self.standardize_data(X)
# calculate covariance matrix
covariance_matrix = self.get_covariance_matrix()
# retrieve selected eigenvectors
eigenvectors = self.get_eigenvectors(covariance_matrix)
# project into lower dimension
projected_matrix = self.project_matrix(eigenvectors)
return projected_matrix
def standardize_data(self, X):
numerator = X - np.mean(X, axis=0) # mean centering
denominator = np.std(X, axis=0) # standardization (dividing by standard deviation)
return numerator / denominator # saved as self.A
def get_covariance_matrix(self, ddof=0):
# calculate covariance matrix with standardized matrix A
C = np.dot(self.A.T, self.A) / (self.n_samples-ddof)
print(C)
print(C.shape)
return C
def get_eigenvectors(self, C):
# calculate eigenvalues & eigenvectors of covariance matrix 'C'
eigenvalues, eigenvectors = np.linalg.eig(C)
# sort eigenvalues descending and select columns based on n_components
n_cols = np.argsort(eigenvalues)[::-1][:self.n_components]
selected_vectors = eigenvectors[:, n_cols]
print(selected_vectors)
return selected_vectors
def project_matrix(self, eigenvectors):
P = np.dot(self.A, eigenvectors)
return P
# Testing
if __name__ == "__main__":
# load iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
# instantiate and fit_transform PCA
pca = PCA()
X_pca = pca.fit_transform(X, n_components=2)
# plot results
fig, ax = plt.subplots(1, 1, figsize=(10,6))
sns.scatterplot(
x = X_pca[:,0],
y = X_pca[:,1],
hue=y
)
ax.set_title('Iris Dataset')
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
sns.despine()
plt.show()