Skip to content

dsabarinathan/LightWeightModel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Light Weight Residual Dense Attention Net for Spectral Reconstruction

This is implementation of LWRDA Net "Light Weight Residual Dense Attention Net for Spectral Reconstruction from RGB Images by K.Uma et .2020"

Environment

  1. Python 3.6.1
  2. Anaconda 5.0.1
  3. Ubuntu 16.04 or Windows10

How to setup the environment

Step 1

Unzip the downloaded folder

Step 2

Open the powershell or terminal

Step 3

$cd yourpathtoLightWeightModel

$pwd
> ~/LightWeightModel

$pip install --upgrade -r requirements.txt

How to test the model on your own imgaes

$python test.py --testImagePath=yourpathtoimages

Results

Data size Data MRAE SSIM
400 Training Data 0.02372 0.9899
50 Validation Data 0.04497 0.9827
10 Testing Data1 0.05478 -
10 Testing Data2 0.04577 -

Reference

  1. "Coordinate 2D Convolution layer"