-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinitialise_output.c
368 lines (347 loc) · 22.4 KB
/
initialise_output.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* Written by James Mc Donald 2006
drjmcdonald@gmail.com
Initialise program output
Copyright (C) 2006 James Mc Donald
Computational Astrophysics Laboratory
National University of Ireland, Galway
This code is covered by the GNU General Public License */
#include "initialise_output.h"
void initialise_output(void){
int i,count;
char string[200],title0[32]="Written by James Mc Donald 2006",title1[35]="Copyright (C) 2006 James Mc Donald",title2[55]="drjmcdonald@gmail.com",title3[38]="Computational Astrophysics Laboratory",title4[39]="National University of Ireland, Galway",title5[55]="This code is covered by the GNU General Public License";
/* ->->->->->->->->->->->-> Incident wave ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_incident_wave.info"); /* Output file for the incident wave properties */
if((output.incident_wave=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_incident_wave.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.incident_wave,title0,title1,title2);
print_out(output.incident_wave,title3,title4,title5);
print_section_title(output.incident_wave,"Incident polarisation state [Normalised]");
/* Incident polarisations */
fprintf(output.incident_wave,"\n%d. Incident polarisation e0=[%.*Lg%+.*Lgi]x+[%.*Lg%+.*Lgi]y\n",count++,LDBLP,incident_LF.polarisation[0].dat[0],LDBLP,incident_LF.polarisation[0].dat[1],LDBLP,incident_LF.polarisation[1].dat[0],LDBLP,incident_LF.polarisation[1].dat[1]);
if(polarisations==1){
fprintf(output.incident_wave,"\n%d. Calculations for the orthonormal polarisation state e1 were NOT included\n",count++);
}
else{
fprintf(output.incident_wave,"\n%d. Calculations for the orthonormal polarisation state\n e1=[%.*Lg%+.*Lgi]x+[%.*Lg%+.*Lgi]y were included\n",count++,LDBLP,incident_LF.orthonormal[0].dat[0],LDBLP,incident_LF.orthonormal[0].dat[1],LDBLP,incident_LF.orthonormal[1].dat[0],LDBLP,incident_LF.orthonormal[1].dat[1]);
}
/* Incident wavelengths */
print_section_title(output.incident_wave,"Incident wavelength");
if(wavelength.flag==0){ /* Use minimum,increment,maximum from control.input */
fprintf(output.incident_wave,"\n%d. Incident wavelength [micrometers]:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,wavelength.limits[0],LDBLP,wavelength.limits[1],LDBLP,wavelength.limits[2]); /* Print description */
fprintf(output.incident_wave," Number of incident wavelength values: %d\n\n",wavelength.list_length); /* Print number of values */
wavelength.value=wavelength.limits[0];
fprintf(output.incident_wave," 0. \t%.*Lg\n",LDBLP,wavelength.value); /* Print values */
for(i=1;i<wavelength.list_length;i++){
wavelength.value+=wavelength.limits[1];
fprintf(output.incident_wave," %d. \t%.*Lg\n",i,LDBLP,wavelength.value);
}
}
else if(wavelength.flag==1){ /* Data was read from the file INPUT_incident_wavelength.input */
fprintf(output.incident_wave,"\n%d. Incident wavelength [micrometers]:\n\n Data was read in from the file \"INPUT_incident_wavelength.input\"\n\n",count++); /* Print description */
fprintf(output.incident_wave," Number of incident wavelength values: %d\n\n",wavelength.list_length); /* Print number of values */
for(i=0;i<wavelength.list_length;i++){ /* Print values */
fprintf(output.incident_wave," %d. \t%.*Lg\n",i,LDBLP,wavelength.list[i]);
}
}
fclose(output.incident_wave);
/* ->->->->->->->->->->->-> Effective radius ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_target_effective_radius.info"); /* Output file for the effective radius */
if((output.eff_radius=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_target_effective_radius.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.eff_radius,title0,title1,title2);
print_out(output.eff_radius,title3,title4,title5);
print_section_title(output.eff_radius,"Effective radius [micrometers]");
if(radius.flag==0){ /* Use minimum,increment,maximum from control.input */
fprintf(output.eff_radius,"\n%d. Effective radius [micrometers]:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,radius.limits[0],LDBLP,radius.limits[1],LDBLP,radius.limits[2]); /* Print description */
fprintf(output.eff_radius," Number of effective radius values: %d\n\n",radius.list_length); /* Print number of values */
radius.value=radius.limits[0];
fprintf(output.eff_radius," 0. \t%.*Lg\n",LDBLP,radius.value); /* Print values */
for(i=1;i<radius.list_length;i++){
radius.value+=radius.limits[1];
fprintf(output.eff_radius," %d. \t%.*Lg\n",i,LDBLP,radius.value);
}
}
else if(radius.flag==1){ /* Data was read from the file INPUT_target_effective_radius.input */
fprintf(output.eff_radius,"\n%d. Effective radius [micrometers]:\n\n Data was read in from the file\n \"INPUT_target_effective_radius.input\"\n\n",count++); /* Print description */
fprintf(output.eff_radius," Number of effective radius values: %d\n\n",radius.list_length); /* Print number of values */
for(i=0;i<radius.list_length;i++){ /* Print values */
fprintf(output.eff_radius," %d. \t%.*Lg\n",i,LDBLP,radius.list[i]);
}
}
fclose(output.eff_radius);
/* ->->->->->->->->->->->-> Complex refractive index vs Wavelength ->->->->->->->->->->->-> */
for(i=0;i<refractive_index.number_of_materials;i++){
reset_string(string);
/* Output file for complex refractive index vs wavelength for material i */
sprintf(string,"OUTPUT_refractive_index_vs_incident_wavelength_%d.info",i);
if((output.refindex_vs_wave[i]=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_refractive_index_vs_incident_wavelength_%d.info\"",i);
print_error("File IO error",string,NULL);
}
print_out(output.refindex_vs_wave[i],title0,title1,title2);
print_out(output.refindex_vs_wave[i],title3,title4,title5);
reset_string(string);
sprintf(string,"Complex refractive index vs Wavelength [micrometers] for material %d",i);
print_section_title(output.refindex_vs_wave[i],string);
fprintf(output.refindex_vs_wave[i],"\nWavelength\t\tComplex refractive index\n");
}
/* ->->->->->->->->->->->-> Target description ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_target_description.info"); /* Output file for the target description */
if((output.target_descrip=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_target_description.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.target_descrip,title0,title1,title2);
print_out(output.target_descrip,title3,title4,title5);
print_section_title(output.target_descrip,"Target description");
/* Target shape */
fprintf(output.target_descrip,"\n%d. Target shape description: %s\n",count++,target.shape);
/* Dipole array dimensions */
fprintf(output.target_descrip,"\n%d. Number of dipoles in the x direction, K: %d\n",count++,target.K);
fprintf(output.target_descrip,"\n%d. Number of dipoles in the y direction, J: %d\n",count++,target.J);
fprintf(output.target_descrip,"\n%d. Number of dipoles in the z direction, P: %d\n",count++,target.P);
/* Number of dipoles */
fprintf(output.target_descrip,"\n%d. Number of dipoles in extended rectangular array, N: %ld\n",count++,target.N);
fprintf(output.target_descrip,"\n%d. Number of dipoles in actual target, Nd: %ld\n",count++,target.Nd);
/* Material information */
fprintf(output.target_descrip,"\n%d. Number of different materials in the target: %d\n",count++,refractive_index.number_of_materials);
/* Target description data */
print_section_title(output.target_descrip,"Target parameterisation");
fprintf(output.target_descrip,"\n Column 0: Wavelength [Micrometers]\n");
fprintf(output.target_descrip," Column 1: Effective radius [Micrometers]\n");
fprintf(output.target_descrip," Column 2: Size parameter\n");
fprintf(output.target_descrip," Column 3: Dipole spacing [Micrometers]\n");
fprintf(output.target_descrip," Column 4: Dipoles per wavelength\n\n");
/* ->->->->->->->->->->->-> Target orientations ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_target_orientations.info"); /* Output file for the target orientations */
if((output.target_orien=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_target_orientations.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.target_orien,title0,title1,title2);
print_out(output.target_orien,title3,title4,title5);
print_section_title(output.target_orien,"Target orientations [Degrees]");
/* Euler phi */
if(euler_phi.flag==0){ /* Used minimum,increment,maximum from control.input */
fprintf(output.target_orien,"\n%d. 1st Euler angle - phi - Azimuthal angle:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,euler_phi.limits[0],LDBLP,euler_phi.limits[1],LDBLP,euler_phi.limits[2]); /* Print description */
fprintf(output.target_orien," Number of Euler phi values: %d\n\n",euler_phi.list_length); /* Print number of values */
euler_phi.value=euler_phi.limits[0];
fprintf(output.target_orien," 0. \t%.*Lg\n",LDBLP,euler_phi.value); /* Print values */
for(i=1;i<euler_phi.list_length;i++){
euler_phi.value+=euler_phi.limits[1];
fprintf(output.target_orien," %d. \t%.*Lg\n",i,LDBLP,euler_phi.value);
}
}
else if(euler_phi.flag==1){ /* Data was read from the file INPUT_target_orientation_euler_phi.input */
fprintf(output.target_orien,"\n%d. 1st Euler angle - phi - Azimuthal angle:\n\n Data was read in from the file\n \"INPUT_target_orientation_euler_phi.input\"\n\n",count++); /* Print description */
fprintf(output.target_orien," Number of Euler phi values: %d\n\n",euler_phi.list_length); /* Print number of values */
for(i=0;i<euler_phi.list_length;i++){ /* Print values */
fprintf(output.target_orien," %d. \t%.*Lg\n",i,LDBLP,euler_phi.list[i]);
}
}
/* Euler theta */
if(euler_theta.flag==0){ /* Used minimum,increment,maximum from control.input */
fprintf(output.target_orien,"\n%d. 2st Euler angle - theta - Polar/zenith angle:\n\n N.B. Distributed via cos(theta)\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,euler_theta.limits[0],LDBLP,euler_theta.limits[1],LDBLP,euler_theta.limits[2]); /* Print description */
fprintf(output.target_orien," Number of Euler theta values: %d\n\n",euler_theta.list_length); /* Print number of values */
euler_theta.value=euler_theta.limits[0];
fprintf(output.target_orien," 0. \t%+.*Lg\t\t%.*Lg\n",LDBLP,euler_theta.value,LDBLP,radians_to_degrees(acosl(euler_theta.value))); /* Print values */
for(i=1;i<euler_theta.list_length;i++){
euler_theta.value+=euler_theta.limits[1];
fprintf(output.target_orien," %d. \t%+.*Lg\t\t%.*Lg\n",i,LDBLP,euler_theta.value,LDBLP,radians_to_degrees(acosl(euler_theta.value)));
}
}
else if(euler_theta.flag==1){ /* Data was read from the file INPUT_target_orientation_euler_theta.input */
fprintf(output.target_orien,"\n%d. 2st Euler angle - theta - Polar/zenith angle:\n\n N.B. Distributed via cos(theta)\n Data was read in from the file\n \"INPUT_target_orientation_euler_theta.input\"\n\n",count++); /* Print description */
fprintf(output.target_orien," Number of Euler theta values: %d\n\n",euler_theta.list_length); /* Print number of values */
for(i=0;i<euler_theta.list_length;i++){ /* Print values */
fprintf(output.target_orien," %d. \t%+.*Lg\t\t%.*Lg\n",i,LDBLP,euler_theta.list[i],LDBLP,radians_to_degrees(acosl(euler_theta.list[i])));
}
}
/* Euler psi */
if(euler_psi.flag==0){ /* Used minimum,increment,maximum from control.input */
fprintf(output.target_orien,"\n%d. 3rd Euler angle - psi - Azimuthal angle:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,euler_psi.limits[0],LDBLP,euler_psi.limits[1],LDBLP,euler_psi.limits[2]); /* Print description */
euler_psi.value=euler_psi.limits[0];
fprintf(output.target_orien," Number of Euler psi values: %d\n\n",euler_psi.list_length); /* Print number of values */
fprintf(output.target_orien," 0. \t%.*Lg\n",LDBLP,euler_psi.value); /* Print values */
for(i=1;i<euler_psi.list_length;i++){
euler_psi.value+=euler_psi.limits[1];
fprintf(output.target_orien," %d. \t%.*Lg\n",i,LDBLP,euler_psi.value);
}
}
else if(euler_psi.flag==1){ /* Data was read from the file INPUT_target_orientation_euler_psi.input */
fprintf(output.target_orien,"\n%d. 3rd Euler angle - psi - Azimuthal angle:\n\n Data was read in from the file\n \"INPUT_target_orientation_euler_psi.input\"\n\n",count++); /* Print description */
fprintf(output.target_orien," Number of Euler psi values: %d\n\n",euler_psi.list_length); /* Print number of values */
for(i=0;i<euler_psi.list_length;i++){ /* Print values */
fprintf(output.target_orien," %d. \t%.*Lg\n",i,LDBLP,euler_psi.list[i]);
}
}
fclose(output.target_orien);
/* ->->->->->->->->->->->-> Scattering angles ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_scattering_angles.info"); /* Output file for the scattering angles */
if((output.scatt_angle=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_scattering_angles.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.scatt_angle,title0,title1,title2);
print_out(output.scatt_angle,title3,title4,title5);
print_section_title(output.scatt_angle,"Scattering angles [Degrees]");
/* phi */
if(phi.flag==0){ /* Used minimum,increment,maximum from control.input */
fprintf(output.scatt_angle,"\n%d. Scattering azimuthal angle phi:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,phi.limits[0],LDBLP,phi.limits[1],LDBLP,phi.limits[2]); /* Print description */
phi.value=phi.limits[0];
fprintf(output.scatt_angle," Number of phi values: %d\n\n",phi.list_length); /* Print number of values */
fprintf(output.scatt_angle," 0. \t%.*Lg\n",LDBLP,phi.value); /* Print values */
for(i=1;i<phi.list_length;i++){
phi.value+=phi.limits[1];
fprintf(output.scatt_angle," %d. \t%.*Lg\n",i,LDBLP,phi.value);
}
}
else if(phi.flag==1){ /* Data was read from the file INPUT_scattering_direction_phi.input */
fprintf(output.scatt_angle,"\n%d. Scattering azimuthal angle phi:\n\n Data was read in from the file\n \"INPUT_scattering_direction_phi.input\"\n\n",count++); /* Print description */
fprintf(output.scatt_angle," Number of phi values: %d\n\n",phi.list_length); /* Print number of values */
for(i=0;i<phi.list_length;i++){ /* Print values */
fprintf(output.scatt_angle," %d. \t%.*Lg\n",i,LDBLP,phi.list[i]);
}
}
/* theta */
if(theta.flag==0){ /* Use minimum,increment,maximum from control.input */
fprintf(output.scatt_angle,"\n%d. Scattering polar/zenith angle theta:\n\n Used minimum,increment,maximum from control.input\n minimum=%.*Lg\n increment=%.*Lg\n maximum=%.*Lg\n\n",count++,LDBLP,theta.limits[0],LDBLP,theta.limits[1],LDBLP,theta.limits[2]); /* Print description */
fprintf(output.scatt_angle," Number of theta values: %d\n\n",theta.list_length); /* Print number of values */
theta.value=theta.limits[0];
fprintf(output.scatt_angle," 0. \t%.*Lg\n",LDBLP,theta.value); /* Print values */
for(i=1;i<theta.list_length;i++){
theta.value+=theta.limits[1];
fprintf(output.scatt_angle," %d. \t%.*Lg\n",i,LDBLP,theta.value);
}
}
else if(theta.flag==1){ /* Data was read from the file INPUT_scattering_direction_theta.input */
fprintf(output.scatt_angle,"\n%d. Scattering polar/zenith angle theta:\n\n Data was read in from the file\n \"INPUT_scattering_direction_theta.input\"\n\n",count++); /* Print description */
fprintf(output.scatt_angle," Number of theta values: %d\n\n",theta.list_length); /* Print number of values */
for(i=0;i<theta.list_length;i++){ /* Print values */
fprintf(output.scatt_angle," %d. \t%.*Lg\n",i,LDBLP,theta.list[i]);
}
}
fclose(output.scatt_angle);
/* ->->->->->->->->->->->-> Iterative parameters ->->->->->->->->->->->-> */
count=1;
reset_string(string);
sprintf(string,"OUTPUT_iterative.info"); /* Output file for the iterative parameters */
if((output.iter=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_iterative.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.iter,title0,title1,title2);
print_out(output.iter,title3,title4,title5);
print_section_title(output.iter,"Iterative parameters");
/* Iterative scheme - Choice */
reset_string(string);
if((strcmp(iterative.scheme,"bicg")==0)){
sprintf(string,"[bicg]\n BiConjugate-Gradients");
}
if((strcmp(iterative.scheme,"bicg_sym")==0)){
sprintf(string,"[bicg_sym]\n BiConjugate-Gradients for symmetric systems");
}
if((strcmp(iterative.scheme,"bicgstab")==0)){
sprintf(string,"[bicgstab]\n Stabilised version of the BiConjugate-Gradients");
}
if((strcmp(iterative.scheme,"cg")==0)){
sprintf(string,"[cg]\n Conjugate-Gradients");
}
if((strcmp(iterative.scheme,"cgs")==0)){
sprintf(string,"[cgs]\n Conjugate-Gradients Squared");
}
if((strcmp(iterative.scheme,"mlbicgstab_orig")==0)){
sprintf(string,"[mlbicgstab_orig]\n A variant of BiCGSTAB based on multiple Lanczos starting\n vectors (Author's original algorithm)");
}
if((strcmp(iterative.scheme,"mlbicgstab")==0)){
sprintf(string,"[mlbicgstab]\n A variant of BiCGSTAB based on multiple Lanczos starting\n vectors (Author's reformulated algorithm)");
}
if((strcmp(iterative.scheme,"mlbicgstab_ss")==0)){
sprintf(string,"[mlbicgstab_ss]\n A variant of BiCGSTAB based on multiple Lanczos starting\n vectors (Author's space saving algorithm)");
}
if((strcmp(iterative.scheme,"qmr")==0)){
sprintf(string,"[qmr]\n Quasi-minimal residual with coupled two-term recurrences");
}
if((strcmp(iterative.scheme,"qmr_sym")==0)){
sprintf(string,"[qmr_sym]\n Quasi-minimal residual for symmetric systems");
}
if((strcmp(iterative.scheme,"rbicgstab")==0)){
sprintf(string,"[rbicgstab]\n Restarted, stabilised version of the BiConjugate-Gradients");
}
if((strcmp(iterative.scheme,"tfqmr")==0)){
sprintf(string,"[tfqmr]\n Transpose-free quasi-minimal residual");
}
fprintf(output.iter,"\n%d. Iterative scheme: %s\n",count++,string);
/* Iterative scheme - Number of starting vectors */
if(((strcmp(iterative.scheme,"mlbicgstab_orig")==0))||
((strcmp(iterative.scheme,"mlbicgstab")==0))||
((strcmp(iterative.scheme,"mlbicgstab_ss")==0))||
((strcmp(iterative.scheme,"rbicgstab")==0))){
fprintf(output.iter,"\n%d. Number of starting vectors: %d\n",count++,iterative.vec);
}
/* Iterative scheme - Convergence tolerance */
fprintf(output.iter,"\n%d. Convergence tolerance: %.*Lg\n",count++,LDBLP,iterative.tolerance);
/* Iterative scheme - Breakdown tolerance */
fprintf(output.iter,"\n%d. Breakdown tolerance: %.*Lg\n",count++,LDBLP,iterative.breakdown);
/* Iterative scheme - Maximum number of iterations */
fprintf(output.iter,"\n%d. Maximum number of iterations: %d\n",count++,iterative.maximum);
/* Iterative scheme - Initial guess */
if(iterative.initial_guess==0){
fprintf(output.iter,"\n%d. Initial guess for the unknown polarisations x=A^{-1}b:\n Set x=0\n",count++);
}
else if(iterative.initial_guess==1){
fprintf(output.iter,"\n%d. Initial guess for the unknown polarisations x=A^{-1}b:\n Set x=1\n",count++);
}
else if(iterative.initial_guess==2){
fprintf(output.iter,"\n%d. Initial guess for the unknown polarisations x=A^{-1}b:\n Set x=b i.e. incident electric-field\n",count++);
}
else if(iterative.initial_guess==3){
fprintf(output.iter,"\n%d. Initial guess for the unknown polarisations x=A^{-1}b:\n Set x=(1/alpha) i.e. (1/polarisability)\n",count++);
}
/* Iterative scheme - Preconditioning */
if(iterative.precond==0){
fprintf(output.iter,"\n%d. Preconditioning: No preconditioning was used\n",count++);
}
else if(iterative.precond==1){
fprintf(output.iter,"\n%d. Preconditioning: Point-Jacobi preconditioning was used\n",count++);
}
/* ->->->->->->->->->->->-> Program execution information ->->->->->->->->->->->-> */
if(timing.enabled){
reset_string(string);
sprintf(string,"OUTPUT_program_execution.info"); /* Output file for the timing information */
if((output.time=fopen(string,"w"))==NULL){
reset_string(string);
sprintf(string,"Could not create the output file \"OUTPUT_program_execution.info\"");
print_error("File IO error",string,NULL);
}
print_out(output.time,title0,title1,title2);
print_out(output.time,title3,title4,title5);
print_section_title(output.time,"MPI information");
fprintf(output.time,"\n Number of processors: %d\n",parallel.np);
fprintf(output.time," Distributed tensor component transpose algorithm: %d\n",parallel.tensor_transpose);
fprintf(output.time," Distributed vector component transpose algorithm: %d\n",parallel.padded_transpose);
print_section_title(output.time,"Runtime, iterative kernel & DFT engine timing information");
fprintf(output.time,"\n Note: The number in square brackets after each time specifies\n the number of executions in the average per processor\n");
}
}