forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
offline_inference_with_prefix.py
83 lines (65 loc) · 2.92 KB
/
offline_inference_with_prefix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from vllm import LLM, SamplingParams
from vllm.distributed import cleanup_dist_env_and_memory
# NOTE: This is just a running example. For benchmarking purpose,
# please see benchmarks/benchmark_prefix_caching.py
# Common prefix.
prefix = (
"You are an expert school principal, skilled in effectively managing "
"faculty and staff. Draft 10-15 questions for a potential first grade "
"Head Teacher for my K-12, all-girls', independent school that emphasizes "
"community, joyful discovery, and life-long learning. The candidate is "
"coming in for a first-round panel interview for a 8th grade Math "
"teaching role. They have 5 years of previous teaching experience "
"as an assistant teacher at a co-ed, public school with experience "
"in middle school math teaching. Based on these information, fulfill "
"the following paragraph: ")
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
generating_prompts = [prefix + prompt for prompt in prompts]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0)
# Create an LLM without prefix caching as a baseline.
regular_llm = LLM(model="facebook/opt-125m", gpu_memory_utilization=0.4)
print("Results without `enable_prefix_caching`")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = regular_llm.generate(generating_prompts, sampling_params)
regular_generated_texts = []
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
regular_generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
# Destroy the LLM object and free up the GPU memory.
del regular_llm
cleanup_dist_env_and_memory()
# Create an LLM with prefix caching enabled.
prefix_cached_llm = LLM(model="facebook/opt-125m",
enable_prefix_caching=True,
gpu_memory_utilization=0.4)
# Warmup so that the shared prompt's KV cache is computed.
prefix_cached_llm.generate(generating_prompts[0], sampling_params)
# Generate with prefix caching.
outputs = prefix_cached_llm.generate(generating_prompts, sampling_params)
print("Results with `enable_prefix_caching`")
cached_generated_texts = []
# Print the outputs. You should see the same outputs as before.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
cached_generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
# Compare the results and display the speedup
generated_same = all([
regular_generated_texts[i] == cached_generated_texts[i]
for i in range(len(prompts))
])
print(f"Generated answers are the same: {generated_same}")