-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrte_acl.c
545 lines (470 loc) · 12.2 KB
/
rte_acl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <rte_eal_memconfig.h>
#include <rte_string_fns.h>
#include <rte_acl.h>
#include <rte_tailq.h>
#include "acl.h"
#include "acl_log.h"
RTE_LOG_REGISTER_DEFAULT(acl_logtype, INFO);
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
static struct rte_tailq_elem rte_acl_tailq = {
.name = "RTE_ACL",
};
EAL_REGISTER_TAILQ(rte_acl_tailq)
#ifndef CC_AVX512_SUPPORT
/*
* If the compiler doesn't support AVX512 instructions,
* then the dummy one would be used instead for AVX512 classify method.
*/
int
rte_acl_classify_avx512x16(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
int
rte_acl_classify_avx512x32(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_X86
/*
* If ISA doesn't have AVX2 or SSE, provide dummy fallbacks
*/
int
rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
int
rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_ARM
int
rte_acl_classify_neon(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_PPC_64
int
rte_acl_classify_altivec(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
static const rte_acl_classify_t classify_fns[] = {
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
[RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2,
[RTE_ACL_CLASSIFY_NEON] = rte_acl_classify_neon,
[RTE_ACL_CLASSIFY_ALTIVEC] = rte_acl_classify_altivec,
[RTE_ACL_CLASSIFY_AVX512X16] = rte_acl_classify_avx512x16,
[RTE_ACL_CLASSIFY_AVX512X32] = rte_acl_classify_avx512x32,
};
/*
* Helper function for acl_check_alg.
* Check support for ARM specific classify methods.
*/
static int
acl_check_alg_arm(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_NEON) {
#if defined(RTE_ARCH_ARM64)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#elif defined(RTE_ARCH_ARM)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
/*
* Helper function for acl_check_alg.
* Check support for PPC specific classify methods.
*/
static int
acl_check_alg_ppc(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_ALTIVEC) {
#if defined(RTE_ARCH_PPC_64)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
#ifdef CC_AVX512_SUPPORT
static int
acl_check_avx512_cpu_flags(void)
{
return (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512VL) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512CD) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW));
}
#endif
/*
* Helper function for acl_check_alg.
* Check support for x86 specific classify methods.
*/
static int
acl_check_alg_x86(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_AVX512X32) {
#ifdef CC_AVX512_SUPPORT
if (acl_check_avx512_cpu_flags() != 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_AVX512X16) {
#ifdef CC_AVX512_SUPPORT
if (acl_check_avx512_cpu_flags() != 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_AVX2) {
#ifdef RTE_ARCH_X86
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_SSE) {
#ifdef RTE_ARCH_X86
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
/*
* Check if input alg is supported by given platform/binary.
* Note that both conditions should be met:
* - at build time compiler supports ISA used by given methods
* - at run time target cpu supports necessary ISA.
*/
static int
acl_check_alg(enum rte_acl_classify_alg alg)
{
switch (alg) {
case RTE_ACL_CLASSIFY_NEON:
return acl_check_alg_arm(alg);
case RTE_ACL_CLASSIFY_ALTIVEC:
return acl_check_alg_ppc(alg);
case RTE_ACL_CLASSIFY_AVX512X32:
case RTE_ACL_CLASSIFY_AVX512X16:
case RTE_ACL_CLASSIFY_AVX2:
case RTE_ACL_CLASSIFY_SSE:
return acl_check_alg_x86(alg);
/* scalar method is supported on all platforms */
case RTE_ACL_CLASSIFY_SCALAR:
return 0;
default:
return -EINVAL;
}
}
/*
* Get preferred alg for given platform.
*/
static enum rte_acl_classify_alg
acl_get_best_alg(void)
{
/*
* array of supported methods for each platform.
* Note that order is important - from most to less preferable.
*/
static const enum rte_acl_classify_alg alg[] = {
#if defined(RTE_ARCH_ARM)
RTE_ACL_CLASSIFY_NEON,
#elif defined(RTE_ARCH_PPC_64)
RTE_ACL_CLASSIFY_ALTIVEC,
#elif defined(RTE_ARCH_X86)
RTE_ACL_CLASSIFY_AVX512X32,
RTE_ACL_CLASSIFY_AVX512X16,
RTE_ACL_CLASSIFY_AVX2,
RTE_ACL_CLASSIFY_SSE,
#endif
RTE_ACL_CLASSIFY_SCALAR,
};
uint32_t i;
/* find best possible alg */
for (i = 0; i != RTE_DIM(alg) && acl_check_alg(alg[i]) != 0; i++)
;
/* we always have to find something suitable */
RTE_VERIFY(i != RTE_DIM(alg));
return alg[i];
}
extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
{
int32_t rc;
/* formal parameters check */
if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
return -EINVAL;
/* user asked us to select the *best* one */
if (alg == RTE_ACL_CLASSIFY_DEFAULT)
alg = acl_get_best_alg();
/* check that given alg is supported */
rc = acl_check_alg(alg);
if (rc != 0)
return rc;
ctx->alg = alg;
return 0;
}
int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories,
enum rte_acl_classify_alg alg)
{
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
return classify_fns[alg](ctx, data, results, num, categories);
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
return rte_acl_classify_alg(ctx, data, results, num, categories,
ctx->alg);
}
struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
struct rte_acl_ctx *ctx = NULL;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return ctx;
}
void
rte_acl_free(struct rte_acl_ctx *ctx)
{
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
if (ctx == NULL)
return;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_write_lock();
/* find our tailq entry */
TAILQ_FOREACH(te, acl_list, next) {
if (te->data == (void *) ctx)
break;
}
if (te == NULL) {
rte_mcfg_tailq_write_unlock();
return;
}
TAILQ_REMOVE(acl_list, te, next);
rte_mcfg_tailq_write_unlock();
rte_free(ctx->mem);
rte_free(ctx);
rte_free(te);
}
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
size_t sz;
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
char name[sizeof(ctx->name)];
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
/* check that input parameters are valid. */
if (param == NULL || param->name == NULL) {
rte_errno = EINVAL;
return NULL;
}
snprintf(name, sizeof(name), "ACL_%s", param->name);
/* calculate amount of memory required for pattern set. */
sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;
/* get EAL TAILQ lock. */
rte_mcfg_tailq_write_lock();
/* if we already have one with that name */
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
/* if ACL with such name doesn't exist, then create a new one. */
if (te == NULL) {
ctx = NULL;
te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
ACL_LOG(ERR, "Cannot allocate tailq entry!");
goto exit;
}
ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id);
if (ctx == NULL) {
ACL_LOG(ERR,
"allocation of %zu bytes on socket %d for %s failed",
sz, param->socket_id, name);
rte_free(te);
goto exit;
}
/* init new allocated context. */
ctx->rules = ctx + 1;
ctx->max_rules = param->max_rule_num;
ctx->rule_sz = param->rule_size;
ctx->socket_id = param->socket_id;
ctx->alg = acl_get_best_alg();
strlcpy(ctx->name, param->name, sizeof(ctx->name));
te->data = (void *) ctx;
TAILQ_INSERT_TAIL(acl_list, te, next);
}
exit:
rte_mcfg_tailq_write_unlock();
return ctx;
}
static int
acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
{
uint8_t *pos;
if (num + ctx->num_rules > ctx->max_rules)
return -ENOMEM;
pos = ctx->rules;
pos += ctx->rule_sz * ctx->num_rules;
memcpy(pos, rules, num * ctx->rule_sz);
ctx->num_rules += num;
return 0;
}
static int
acl_check_rule(const struct rte_acl_rule_data *rd)
{
if ((RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(rd->category_mask)) &
rd->category_mask) == 0 ||
rd->priority > RTE_ACL_MAX_PRIORITY ||
rd->priority < RTE_ACL_MIN_PRIORITY)
return -EINVAL;
return 0;
}
int
rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
uint32_t num)
{
const struct rte_acl_rule *rv;
uint32_t i;
int32_t rc;
if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
return -EINVAL;
for (i = 0; i != num; i++) {
rv = (const struct rte_acl_rule *)
((uintptr_t)rules + i * ctx->rule_sz);
rc = acl_check_rule(&rv->data);
if (rc != 0) {
ACL_LOG(ERR, "%s(%s): rule #%u is invalid",
__func__, ctx->name, i + 1);
return rc;
}
}
return acl_add_rules(ctx, rules, num);
}
/*
* Reset all rules.
* Note that RT structures are not affected.
*/
void
rte_acl_reset_rules(struct rte_acl_ctx *ctx)
{
if (ctx != NULL)
ctx->num_rules = 0;
}
/*
* Reset all rules and destroys RT structures.
*/
void
rte_acl_reset(struct rte_acl_ctx *ctx)
{
if (ctx != NULL) {
rte_acl_reset_rules(ctx);
rte_acl_build(ctx, &ctx->config);
}
}
/*
* Dump ACL context to the stdout.
*/
void
rte_acl_dump(const struct rte_acl_ctx *ctx)
{
if (!ctx)
return;
printf("acl context <%s>@%p\n", ctx->name, ctx);
printf(" socket_id=%"PRId32"\n", ctx->socket_id);
printf(" alg=%"PRId32"\n", ctx->alg);
printf(" first_load_sz=%"PRIu32"\n", ctx->first_load_sz);
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
printf(" num_categories=%"PRIu32"\n", ctx->num_categories);
printf(" num_tries=%"PRIu32"\n", ctx->num_tries);
}
/*
* Dump all ACL contexts to the stdout.
*/
void
rte_acl_list_dump(void)
{
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
rte_acl_dump(ctx);
}
rte_mcfg_tailq_read_unlock();
}