forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
55 lines (40 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# https://deeplearningcourses.com/c/cutting-edge-artificial-intelligence
from subproc_vec_env import SubprocVecEnv
from atari_wrappers import make_atari, wrap_deepmind, Monitor
from neural_network import CNN
from a2c import learn
import os
import gym
import argparse
import logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Mute missing instructions errors
MODEL_PATH = 'models'
SEED = 0
def get_args():
# Get some basic command line arguements
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('-s', '--steps', help='training steps', type=int, default=int(80e6))
parser.add_argument('--nenv', help='No. of environments', type=int, default=16)
return parser.parse_args()
def train(env_id, num_timesteps, num_cpu):
def make_env(rank):
def _thunk():
env = make_atari(env_id)
env.seed(SEED + rank)
gym.logger.setLevel(logging.WARN)
env = wrap_deepmind(env)
# wrap the env one more time for getting total reward
env = Monitor(env, rank)
return env
return _thunk
env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
learn(CNN, env, SEED, total_timesteps=int(num_timesteps * 1.1))
env.close()
pass
def main():
args = get_args()
os.makedirs(MODEL_PATH, exist_ok=True)
train(args.env, args.steps, num_cpu=args.nenv)
if __name__ == "__main__":
main()