-
Notifications
You must be signed in to change notification settings - Fork 5k
/
Copy pathobject.cpp
2021 lines (1710 loc) · 65.9 KB
/
object.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
//
// OBJECT.CPP
//
// Definitions of a CLR Object
//
#include "common.h"
#include "vars.hpp"
#include "class.h"
#include "object.h"
#include "threads.h"
#include "excep.h"
#include "eeconfig.h"
#include "gcheaputilities.h"
#include "field.h"
#include "argdestination.h"
SVAL_IMPL(INT32, ArrayBase, s_arrayBoundsZero);
static DWORD GetGlobalNewHashCode()
{
LIMITED_METHOD_CONTRACT;
// Used for generating hash codes for exceptions to determine whether the
// Catch_Handler_Found_Event should be reported. See Thread::GetNewHashCode.
// Using linear congruential generator from Knuth Vol. 2, p. 102, line 24
static DWORD dwHashCodeSeed = 123456789U * 1566083941U + 1;
const DWORD multiplier = 1*4 + 5; //same as the GetNewHashCode method
dwHashCodeSeed = dwHashCodeSeed*multiplier + 1;
return dwHashCodeSeed;
}
// follow the necessary rules to get a new valid hashcode for an object
DWORD Object::ComputeHashCode()
{
DWORD hashCode;
// note that this algorithm now uses at most HASHCODE_BITS so that it will
// fit into the objheader if the hashcode has to be moved back into the objheader
// such as for an object that is being frozen
Thread *pThread = GetThreadNULLOk();
do
{
if (pThread == NULL)
{
hashCode = (GetGlobalNewHashCode() >> (32-HASHCODE_BITS));
}
else
{
// we use the high order bits in this case because they're more random
hashCode = pThread->GetNewHashCode() >> (32-HASHCODE_BITS);
}
}
while (hashCode == 0); // need to enforce hashCode != 0
// verify that it really fits into HASHCODE_BITS
_ASSERTE((hashCode & ((1<<HASHCODE_BITS)-1)) == hashCode);
return hashCode;
}
DWORD Object::GetGlobalNewHashCode()
{
LIMITED_METHOD_CONTRACT;
// Used for generating hash codes for exceptions to determine whether the
// Catch_Handler_Found_Event should be reported. See Thread::GetNewHashCode.
// Using linear congruential generator from Knuth Vol. 2, p. 102, line 24
static DWORD dwHashCodeSeed = 123456789U * 1566083941U + 1;
const DWORD multiplier = 1*4 + 5; //same as the GetNewHashCode method
dwHashCodeSeed = dwHashCodeSeed*multiplier + 1;
return dwHashCodeSeed;
}
#ifndef DACCESS_COMPILE
INT32 Object::GetHashCodeEx()
{
CONTRACTL
{
MODE_COOPERATIVE;
THROWS;
GC_NOTRIGGER;
}
CONTRACTL_END
// This loop exists because we're inspecting the header dword of the object
// and it may change under us because of races with other threads.
// On top of that, it may have the spin lock bit set, in which case we're
// not supposed to change it.
// In all of these case, we need to retry the operation.
DWORD iter = 0;
DWORD dwSwitchCount = 0;
while (true)
{
DWORD bits = GetHeader()->GetBits();
if (bits & BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX)
{
if (bits & BIT_SBLK_IS_HASHCODE)
{
// Common case: the object already has a hash code
return bits & MASK_HASHCODE;
}
else
{
// We have a sync block index. This means if we already have a hash code,
// it is in the sync block, otherwise we generate a new one and store it there
SyncBlock *psb = GetSyncBlock();
DWORD hashCode = psb->GetHashCode();
if (hashCode != 0)
return hashCode;
hashCode = ComputeHashCode();
return psb->SetHashCode(hashCode);
}
}
else
{
// If a thread is holding the thin lock we need a syncblock
if ((bits & (SBLK_MASK_LOCK_THREADID)) != 0)
{
GetSyncBlock();
// No need to replicate the above code dealing with sync blocks
// here - in the next iteration of the loop, we'll realize
// we have a syncblock, and we'll do the right thing.
}
else
{
// We want to change the header in this case, so we have to check the BIT_SBLK_SPIN_LOCK bit first
if (bits & BIT_SBLK_SPIN_LOCK)
{
iter++;
if ((iter % 1024) != 0 && g_SystemInfo.dwNumberOfProcessors > 1)
{
YieldProcessorNormalized(); // indicate to the processor that we are spinning
}
else
{
__SwitchToThread(0, ++dwSwitchCount);
}
continue;
}
DWORD hashCode = ComputeHashCode();
DWORD newBits = bits | BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX | BIT_SBLK_IS_HASHCODE | hashCode;
if (GetHeader()->SetBits(newBits, bits) == bits)
return hashCode;
// Header changed under us - let's restart this whole thing.
}
}
}
}
#endif // #ifndef DACCESS_COMPILE
BOOL Object::ValidateObjectWithPossibleAV()
{
CANNOT_HAVE_CONTRACT;
SUPPORTS_DAC;
PTR_MethodTable table = GetGCSafeMethodTable();
if (table == NULL)
{
return FALSE;
}
return table->ValidateWithPossibleAV();
}
#ifndef DACCESS_COMPILE
// There are cases where it is not possible to get a type handle during a GC.
// If we can get the type handle, this method will return it.
// Otherwise, the method will return NULL.
TypeHandle Object::GetGCSafeTypeHandleIfPossible() const
{
CONTRACTL
{
NOTHROW;
GC_NOTRIGGER;
if(!IsGCThread()) { MODE_COOPERATIVE; }
}
CONTRACTL_END;
// Although getting the type handle is unsafe and could cause recursive type lookups
// in some cases, it's always safe and straightforward to get to the MethodTable.
MethodTable * pMT = GetGCSafeMethodTable();
_ASSERTE(pMT != NULL);
if (pMT == g_pFreeObjectMethodTable)
{
return NULL;
}
// Don't look at types that belong to an unloading AppDomain, or else
// pObj->GetGCSafeTypeHandle() can AV. For example, we encountered this AV when pObj
// was an array like this:
//
// MyValueType1<MyValueType2>[] myArray
//
// where MyValueType1<T> & MyValueType2 are defined in different assemblies. In such
// a case, looking up the type handle for myArray requires looking in
// MyValueType1<T>'s module's m_AssemblyRefByNameTable, which is garbage if its
// AppDomain is unloading.
//
// Another AV was encountered in a similar case,
//
// MyRefType1<MyRefType2>[] myArray
//
// where MyRefType2's module was unloaded by the time the GC occurred. In at least
// one case, the GC was caused by the AD unload itself (AppDomain::Unload ->
// AppDomain::Exit -> GCInterface::AddMemoryPressure -> WKS::GCHeapUtilities::GarbageCollect).
//
// To protect against all scenarios, verify that
//
// * The MT of the object is not getting unloaded, OR
// * In the case of arrays (potentially of arrays of arrays of arrays ...), the
// MT of the innermost element is not getting unloaded. This then ensures the
// MT of the original object (i.e., array) itself must not be getting
// unloaded either, since the MTs of arrays and of their elements are
// allocated on the same loader allocator.
Module * pLoaderModule = pMT->GetLoaderModule();
// Don't look up types that are unloading due to Collectible Assemblies. Haven't been
// able to find a case where we actually encounter objects like this that can cause
// problems; however, it seems prudent to add this protection just in case.
LoaderAllocator * pLoaderAllocator = pLoaderModule->GetLoaderAllocator();
_ASSERTE(pLoaderAllocator != NULL);
if ((pLoaderAllocator->IsCollectible()) &&
(ObjectHandleIsNull(pLoaderAllocator->GetLoaderAllocatorObjectHandle())))
{
return NULL;
}
// Ok, it should now be safe to get the type handle
return GetGCSafeTypeHandle();
}
/* static */ BOOL Object::SupportsInterface(OBJECTREF pObj, MethodTable* pInterfaceMT)
{
CONTRACTL
{
THROWS;
GC_TRIGGERS;
INJECT_FAULT(COMPlusThrowOM());
PRECONDITION(CheckPointer(pInterfaceMT));
PRECONDITION(pInterfaceMT->IsInterface());
}
CONTRACTL_END
BOOL bSupportsItf = FALSE;
GCPROTECT_BEGIN(pObj)
{
// Make sure the interface method table has been restored.
pInterfaceMT->CheckRestore();
// Check to see if the static class definition indicates we implement the interface.
MethodTable * pMT = pObj->GetMethodTable();
if (pMT->CanCastToInterface(pInterfaceMT))
{
bSupportsItf = TRUE;
}
#ifdef FEATURE_COMINTEROP
else
if (pMT->IsComObjectType())
{
// If this is a COM object, the static class definition might not be complete so we need
// to check if the COM object implements the interface.
bSupportsItf = ComObject::SupportsInterface(pObj, pInterfaceMT);
}
#endif // FEATURE_COMINTEROP
}
GCPROTECT_END();
return bSupportsItf;
}
Assembly *AssemblyBaseObject::GetAssembly()
{
WRAPPER_NO_CONTRACT;
return m_pAssembly;
}
STRINGREF AllocateString(SString sstr)
{
CONTRACTL {
THROWS;
GC_TRIGGERS;
} CONTRACTL_END;
COUNT_T length = sstr.GetCount(); // count of WCHARs excluding terminating NULL
STRINGREF strObj = AllocateString(length);
memcpyNoGCRefs(strObj->GetBuffer(), sstr.GetUnicode(), length*sizeof(WCHAR));
return strObj;
}
void Object::ValidateHeap(BOOL bDeep)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
#if defined (VERIFY_HEAP)
//no need to verify next object's header in this case
//since this is called in verify_heap, which will verfiy every object anyway
Validate(bDeep, FALSE);
#endif
}
void Object::SetOffsetObjectRef(DWORD dwOffset, size_t dwValue)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
OBJECTREF* location;
OBJECTREF o;
location = (OBJECTREF *) &GetData()[dwOffset];
o = ObjectToOBJECTREF(*(Object **) &dwValue);
SetObjectReference( location, o );
}
void SetObjectReferenceUnchecked(OBJECTREF *dst,OBJECTREF ref)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
STATIC_CONTRACT_CANNOT_TAKE_LOCK;
// Assign value. We use casting to avoid going thru the overloaded
// OBJECTREF= operator which in this case would trigger a false
// write-barrier violation assert.
VolatileStore((Object**)dst, OBJECTREFToObject(ref));
#ifdef _DEBUG
Thread::ObjectRefAssign(dst);
#endif
ErectWriteBarrier(dst, ref);
}
void STDCALL CopyValueClassUnchecked(void* dest, void* src, MethodTable *pMT)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
_ASSERTE(!pMT->IsArray()); // bunch of assumptions about arrays wrong.
if (pMT->ContainsGCPointers())
{
memmoveGCRefs(dest, src, pMT->GetNumInstanceFieldBytesIfContainsGCPointers());
}
else
{
DWORD numInstanceFieldBytes = pMT->GetNumInstanceFieldBytes();
switch (numInstanceFieldBytes)
{
case 1:
*(UINT8*)dest = *(UINT8*)src;
break;
#ifndef ALIGN_ACCESS
// we can hit an alignment fault if the value type has multiple
// smaller fields. Example: if there are two I4 fields, the
// value class can be aligned to 4-byte boundaries, yet the
// NumInstanceFieldBytes is 8
case 2:
*(UINT16*)dest = *(UINT16*)src;
break;
case 4:
*(UINT32*)dest = *(UINT32*)src;
break;
case 8:
*(UINT64*)dest = *(UINT64*)src;
break;
#endif // !ALIGN_ACCESS
default:
memcpyNoGCRefs(dest, src, numInstanceFieldBytes);
break;
}
}
}
// Copy value class into the argument specified by the argDest.
// The destOffset is nonzero when copying values into Nullable<T>, it is the offset
// of the T value inside of the Nullable<T>
void STDCALL CopyValueClassArgUnchecked(ArgDestination *argDest, void* src, MethodTable *pMT, int destOffset)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
#if defined(UNIX_AMD64_ABI)
if (argDest->IsStructPassedInRegs())
{
argDest->CopyStructToRegisters(src, pMT->GetNumInstanceFieldBytes(), destOffset);
return;
}
#elif defined(TARGET_ARM64)
if (argDest->IsHFA())
{
argDest->CopyHFAStructToRegister(src, pMT->GetNumInstanceFieldBytes());
return;
}
#elif defined(TARGET_LOONGARCH64) || defined(TARGET_RISCV64)
if (argDest->IsStructPassedInRegs())
{
argDest->CopyStructToRegisters(src, pMT->GetNumInstanceFieldBytes(), destOffset);
return;
}
#endif // UNIX_AMD64_ABI
// destOffset is only valid for Nullable<T> passed in registers
_ASSERTE(destOffset == 0);
CopyValueClassUnchecked(argDest->GetDestinationAddress(), src, pMT);
}
// Initialize the value class argument to zeros
void InitValueClassArg(ArgDestination *argDest, MethodTable *pMT)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
#if defined(UNIX_AMD64_ABI)
if (argDest->IsStructPassedInRegs())
{
argDest->ZeroStructInRegisters(pMT->GetNumInstanceFieldBytes());
return;
}
#endif
#if defined(TARGET_LOONGARCH64) || defined(TARGET_RISCV64)
if (argDest->IsStructPassedInRegs())
{
*(UINT64*)(argDest->GetStructGenRegDestinationAddress()) = 0;
*(UINT64*)(argDest->GetDestinationAddress()) = 0;
return;
}
#endif
InitValueClass(argDest->GetDestinationAddress(), pMT);
}
#if defined (VERIFY_HEAP)
#include "dbginterface.h"
// make the checking code goes as fast as possible!
#if defined(_MSC_VER)
#pragma optimize("tgy", on)
#endif
#define CREATE_CHECK_STRING(x) #x
#define CHECK_AND_TEAR_DOWN(x) \
do{ \
if (!(x)) \
{ \
_ASSERTE(!CREATE_CHECK_STRING(x)); \
EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); \
} \
} while (0)
VOID Object::Validate(BOOL bDeep, BOOL bVerifyNextHeader, BOOL bVerifySyncBlock)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
STATIC_CONTRACT_MODE_COOPERATIVE;
STATIC_CONTRACT_CANNOT_TAKE_LOCK;
if (g_fEEShutDown & ShutDown_Phase2)
{
// During second phase of shutdown the code below is not guaranteed to work.
return;
}
#ifdef _DEBUG
{
Thread *pThread = GetThreadNULLOk();
if (pThread != NULL && !(pThread->PreemptiveGCDisabled()))
{
// Debugger helper threads are special in that they take over for
// what would normally be a nonEE thread (the RCThread). If an
// EE thread is doing RCThread duty, then it should be treated
// as such.
//
// There are some GC threads in the same kind of category. Note that
// GetThread() sometimes returns them, if DLL_THREAD_ATTACH notifications
// have run some managed code.
if (!dbgOnly_IsSpecialEEThread() && !IsGCSpecialThread())
_ASSERTE(!"OBJECTREF being accessed while thread is in preemptive GC mode.");
}
}
#endif
{ // ValidateInner can throw or fault on failure which violates contract.
CONTRACT_VIOLATION(ThrowsViolation | FaultViolation);
// using inner helper because of TRY and stack objects with destructors.
ValidateInner(bDeep, bVerifyNextHeader, bVerifySyncBlock);
}
}
VOID Object::ValidateInner(BOOL bDeep, BOOL bVerifyNextHeader, BOOL bVerifySyncBlock)
{
STATIC_CONTRACT_THROWS; // See CONTRACT_VIOLATION above
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FAULT; // See CONTRACT_VIOLATION above
STATIC_CONTRACT_MODE_COOPERATIVE;
STATIC_CONTRACT_CANNOT_TAKE_LOCK;
int lastTest = 0;
EX_TRY
{
// in order to avoid contract violations in the EH code we'll allow AVs here,
// they'll be handled in the catch block
AVInRuntimeImplOkayHolder avOk;
MethodTable *pMT = GetGCSafeMethodTable();
lastTest = 1;
CHECK_AND_TEAR_DOWN(pMT && pMT->Validate());
lastTest = 2;
bool noRangeChecks =
(g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_NO_RANGE_CHECKS) == EEConfig::HEAPVERIFY_NO_RANGE_CHECKS;
// noRangeChecks depends on initial values being FALSE
BOOL bSmallObjectHeapPtr = FALSE, bLargeObjectHeapPtr = FALSE;
if (!noRangeChecks)
{
bSmallObjectHeapPtr = GCHeapUtilities::GetGCHeap()->IsHeapPointer(this, true);
if (!bSmallObjectHeapPtr)
bLargeObjectHeapPtr = GCHeapUtilities::GetGCHeap()->IsHeapPointer(this);
CHECK_AND_TEAR_DOWN(bSmallObjectHeapPtr || bLargeObjectHeapPtr);
}
lastTest = 3;
if (bDeep)
{
CHECK_AND_TEAR_DOWN(GetHeader()->Validate(bVerifySyncBlock));
}
lastTest = 4;
if (bDeep && (g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_GC)) {
GCHeapUtilities::GetGCHeap()->ValidateObjectMember(this);
}
lastTest = 5;
// since bSmallObjectHeapPtr is initialized to FALSE
// we skip checking noRangeChecks since if skipping
// is enabled bSmallObjectHeapPtr will always be false.
if (bSmallObjectHeapPtr) {
CHECK_AND_TEAR_DOWN(!GCHeapUtilities::GetGCHeap()->IsLargeObject(this));
}
lastTest = 6;
lastTest = 7;
_ASSERTE(GCHeapUtilities::IsGCHeapInitialized());
// try to validate next object's header
if (bDeep
&& bVerifyNextHeader
&& GCHeapUtilities::GetGCHeap()->RuntimeStructuresValid()
//NextObj could be very slow if concurrent GC is going on
&& !GCHeapUtilities::GetGCHeap ()->IsConcurrentGCInProgress ())
{
Object * nextObj = GCHeapUtilities::GetGCHeap ()->NextObj (this);
if ((nextObj != NULL) &&
(nextObj->GetGCSafeMethodTable() != nullptr) &&
(nextObj->GetGCSafeMethodTable() != g_pFreeObjectMethodTable))
{
// we need a read barrier here - to make sure we read the object header _after_
// reading data that tells us that the object is eligible for verification
// (also see: gc.cpp/a_fit_segment_end_p)
VOLATILE_MEMORY_BARRIER();
CHECK_AND_TEAR_DOWN(nextObj->GetHeader()->Validate(FALSE));
}
}
lastTest = 8;
#ifdef FEATURE_64BIT_ALIGNMENT
if (pMT->RequiresAlign8())
{
CHECK_AND_TEAR_DOWN((((size_t)this) & 0x7) == (size_t)(pMT->IsValueType()?4:0));
}
lastTest = 9;
#endif // FEATURE_64BIT_ALIGNMENT
}
EX_CATCH
{
STRESS_LOG3(LF_ASSERT, LL_ALWAYS, "Detected use of corrupted OBJECTREF: %p [MT=%p] (lastTest=%d)", this, lastTest > 0 ? (*(size_t*)this) : 0, lastTest);
CHECK_AND_TEAR_DOWN(!"Detected use of a corrupted OBJECTREF. Possible GC hole.");
}
EX_END_CATCH(SwallowAllExceptions);
}
#endif // VERIFY_HEAP
/*==================================NewString===================================
**Action: Creates a System.String object.
**Returns:
**Arguments:
**Exceptions:
==============================================================================*/
STRINGREF StringObject::NewString(INT32 length) {
CONTRACTL {
GC_TRIGGERS;
MODE_COOPERATIVE;
PRECONDITION(length>=0);
} CONTRACTL_END;
STRINGREF pString;
if (length<0) {
return NULL;
} else if (length == 0) {
return GetEmptyString();
} else {
pString = AllocateString(length);
_ASSERTE(pString->GetBuffer()[length] == 0);
return pString;
}
}
/*==================================NewString===================================
**Action: Many years ago, VB didn't have the concept of a byte array, so enterprising
** users created one by allocating a BSTR with an odd length and using it to
** store bytes. A generation later, we're still stuck supporting this behavior.
** The way that we do this is to take advantage of the difference between the
** array length and the string length. The string length will always be the
** number of characters between the start of the string and the terminating 0.
** If we need an odd number of bytes, we'll take one wchar after the terminating 0.
** (e.g. at position StringLength+1). The high-order byte of this wchar is
** reserved for flags and the low-order byte is our odd byte. This function is
** used to allocate a string of that shape, but we don't actually mark the
** trailing byte as being in use yet.
**Returns: A newly allocated string. Null if length is less than 0.
**Arguments: length -- the length of the string to allocate
** bHasTrailByte -- whether the string also has a trailing byte.
**Exceptions: OutOfMemoryException if AllocateString fails.
==============================================================================*/
STRINGREF StringObject::NewString(INT32 length, BOOL bHasTrailByte) {
CONTRACTL {
GC_TRIGGERS;
MODE_COOPERATIVE;
PRECONDITION(length>=0 && length != INT32_MAX);
} CONTRACTL_END;
STRINGREF pString;
if (length<0 || length == INT32_MAX) {
return NULL;
} else if (length == 0) {
return GetEmptyString();
} else {
pString = AllocateString(length);
_ASSERTE(pString->GetBuffer()[length]==0);
if (bHasTrailByte) {
_ASSERTE(pString->GetBuffer()[length+1]==0);
}
}
return pString;
}
//========================================================================
// Creates a System.String object and initializes from
// the supplied null-terminated C string.
//
// Maps NULL to null. This function does *not* return null to indicate
// error situations: it throws an exception instead.
//========================================================================
STRINGREF StringObject::NewString(const WCHAR *pwsz)
{
CONTRACTL {
GC_TRIGGERS;
MODE_COOPERATIVE;
} CONTRACTL_END;
if (!pwsz)
{
return NULL;
}
else
{
DWORD nch = (DWORD)u16_strlen(pwsz);
if (nch==0) {
return GetEmptyString();
}
#if 0
//
// This assert is disabled because it is valid for us to get a
// pointer from the gc heap here as long as it is pinned. This
// can happen when a string is marshalled to unmanaged by
// pinning and then later put into a struct and that struct is
// then marshalled to managed.
//
_ASSERTE(!GCHeapUtilities::GetGCHeap()->IsHeapPointer((BYTE *) pwsz) ||
!"pwsz can not point to GC Heap");
#endif // 0
STRINGREF pString = AllocateString( nch );
memcpyNoGCRefs(pString->GetBuffer(), pwsz, nch*sizeof(WCHAR));
_ASSERTE(pString->GetBuffer()[nch] == 0);
return pString;
}
}
#if defined(_MSC_VER) && defined(TARGET_X86)
#pragma optimize("y", on) // Small critical routines, don't put in EBP frame
#endif
STRINGREF StringObject::NewString(const WCHAR *pwsz, int length) {
CONTRACTL {
THROWS;
GC_TRIGGERS;
MODE_COOPERATIVE;
PRECONDITION(length>=0);
} CONTRACTL_END;
if (!pwsz)
{
return NULL;
}
else if (length <= 0) {
return GetEmptyString();
} else {
#if 0
//
// This assert is disabled because it is valid for us to get a
// pointer from the gc heap here as long as it is pinned. This
// can happen when a string is marshalled to unmanaged by
// pinning and then later put into a struct and that struct is
// then marshalled to managed.
//
_ASSERTE(!GCHeapUtilities::GetGCHeap()->IsHeapPointer((BYTE *) pwsz) ||
!"pwsz can not point to GC Heap");
#endif // 0
STRINGREF pString = AllocateString(length);
memcpyNoGCRefs(pString->GetBuffer(), pwsz, length*sizeof(WCHAR));
_ASSERTE(pString->GetBuffer()[length] == 0);
return pString;
}
}
#if defined(_MSC_VER) && defined(TARGET_X86)
#pragma optimize("", on) // Go back to command line default optimizations
#endif
STRINGREF StringObject::NewString(LPCUTF8 psz)
{
CONTRACTL {
GC_TRIGGERS;
MODE_COOPERATIVE;
THROWS;
PRECONDITION(CheckPointer(psz));
} CONTRACTL_END;
int length = (int)strlen(psz);
if (length == 0) {
return GetEmptyString();
}
CQuickBytes qb;
WCHAR* pwsz = (WCHAR*) qb.AllocThrows((length) * sizeof(WCHAR));
length = MultiByteToWideChar(CP_UTF8, 0, psz, length, pwsz, length);
if (length == 0) {
COMPlusThrow(kArgumentException, W("Arg_InvalidUTF8String"));
}
return NewString(pwsz, length);
}
STRINGREF StringObject::NewString(LPCUTF8 psz, int cBytes)
{
CONTRACTL {
GC_TRIGGERS;
MODE_COOPERATIVE;
THROWS;
PRECONDITION(CheckPointer(psz, NULL_OK));
} CONTRACTL_END;
if (!psz)
return NULL;
_ASSERTE(psz);
_ASSERTE(cBytes >= 0);
if (cBytes == 0) {
return GetEmptyString();
}
int cWszBytes = 0;
if (!ClrSafeInt<int>::multiply(cBytes, sizeof(WCHAR), cWszBytes))
COMPlusThrowOM();
CQuickBytes qb;
WCHAR* pwsz = (WCHAR*) qb.AllocThrows(cWszBytes);
int length = MultiByteToWideChar(CP_UTF8, 0, psz, cBytes, pwsz, cBytes);
if (length == 0) {
COMPlusThrow(kArgumentException, W("Arg_InvalidUTF8String"));
}
return NewString(pwsz, length);
}
//
//
// STATIC MEMBER VARIABLES
//
//
STRINGREF* StringObject::EmptyStringRefPtr = NULL;
bool StringObject::EmptyStringIsFrozen = false;
//The special string helpers are used as flag bits for weird strings that have bytes
//after the terminating 0. The only case where we use this right now is the VB BSTR as
//byte array which is described in MakeStringAsByteArrayFromBytes.
#define SPECIAL_STRING_VB_BYTE_ARRAY 0x100
FORCEINLINE BOOL MARKS_VB_BYTE_ARRAY(WCHAR x)
{
return static_cast<BOOL>(x & SPECIAL_STRING_VB_BYTE_ARRAY);
}
FORCEINLINE WCHAR MAKE_VB_TRAIL_BYTE(BYTE x)
{
return static_cast<WCHAR>(x) | SPECIAL_STRING_VB_BYTE_ARRAY;
}
FORCEINLINE BYTE GET_VB_TRAIL_BYTE(WCHAR x)
{
return static_cast<BYTE>(x & 0xFF);
}
/*==============================InitEmptyStringRefPtr============================
**Action: Gets an empty string refptr, cache the result.
**Returns: The retrieved STRINGREF.
==============================================================================*/
STRINGREF* StringObject::InitEmptyStringRefPtr() {
CONTRACTL {
THROWS;
MODE_ANY;
GC_TRIGGERS;
} CONTRACTL_END;
GCX_COOP();
EEStringData data(0, W(""), TRUE);
void* pinnedStr = nullptr;
EmptyStringRefPtr = SystemDomain::System()->DefaultDomain()->GetLoaderAllocator()->GetStringObjRefPtrFromUnicodeString(&data, &pinnedStr);
EmptyStringIsFrozen = pinnedStr != nullptr;
return EmptyStringRefPtr;
}
/*============================InternalTrailByteCheck============================
**Action: Many years ago, VB didn't have the concept of a byte array, so enterprising
** users created one by allocating a BSTR with an odd length and using it to
** store bytes. A generation later, we're still stuck supporting this behavior.
** The way that we do this is stick the trail byte in the sync block
** whenever we encounter such a situation. Since we expect this to be a very corner case
** accessing the sync block seems like a good enough solution
**
**Returns: True if <CODE>str</CODE> contains a VB trail byte, false otherwise.
**Arguments: str -- The string to be examined.
**Exceptions: None
==============================================================================*/
BOOL StringObject::HasTrailByte() {
WRAPPER_NO_CONTRACT;
SyncBlock * pSyncBlock = PassiveGetSyncBlock();
if(pSyncBlock != NULL)
{
return pSyncBlock->HasCOMBstrTrailByte();
}
return FALSE;
}
/*=================================GetTrailByte=================================
**Action: If <CODE>str</CODE> contains a vb trail byte, returns a copy of it.
**Returns: True if <CODE>str</CODE> contains a trail byte. *bTrailByte is set to
** the byte in question if <CODE>str</CODE> does have a trail byte, otherwise
** it's set to 0.
**Arguments: str -- The string being examined.
** bTrailByte -- An out param to hold the value of the trail byte.
**Exceptions: None.
==============================================================================*/
BOOL StringObject::GetTrailByte(BYTE *bTrailByte) {
CONTRACTL
{
NOTHROW;
GC_NOTRIGGER;
MODE_ANY;
}
CONTRACTL_END;
_ASSERTE(bTrailByte);
*bTrailByte=0;
BOOL retValue = HasTrailByte();
if(retValue)
{
*bTrailByte = GET_VB_TRAIL_BYTE(GetHeader()->PassiveGetSyncBlock()->GetCOMBstrTrailByte());
}
return retValue;
}
/*=================================SetTrailByte=================================
**Action: Sets the trail byte in the sync block
**Returns: True.
**Arguments: str -- The string into which to set the trail byte.
** bTrailByte -- The trail byte to be added to the string.
**Exceptions: None.
==============================================================================*/
BOOL StringObject::SetTrailByte(BYTE bTrailByte) {
WRAPPER_NO_CONTRACT;
GetHeader()->GetSyncBlock()->SetCOMBstrTrailByte(MAKE_VB_TRAIL_BYTE(bTrailByte));
return TRUE;
}
#ifdef USE_CHECKED_OBJECTREFS
//-------------------------------------------------------------
// Default constructor, for non-initializing declarations:
//
// OBJECTREF or;
//-------------------------------------------------------------
OBJECTREF::OBJECTREF()
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_FORBID_FAULT;
m_asObj = (Object*)POISONC;
Thread::ObjectRefNew(this);
}
//-------------------------------------------------------------
// Copy constructor, for passing OBJECTREF's as function arguments.
//-------------------------------------------------------------
OBJECTREF::OBJECTREF(const OBJECTREF & objref)
{
STATIC_CONTRACT_NOTHROW;
STATIC_CONTRACT_GC_NOTRIGGER;
STATIC_CONTRACT_MODE_COOPERATIVE;
STATIC_CONTRACT_FORBID_FAULT;
VALIDATEOBJECT(objref.m_asObj);
// !!! If this assert is fired, there are two possibilities:
// !!! 1. You are doing a type cast, e.g. *(OBJECTREF*)pObj
// !!! Instead, you should use ObjectToOBJECTREF(*(Object**)pObj),
// !!! or ObjectToSTRINGREF(*(StringObject**)pObj)
// !!! 2. There is a real GC hole here.
// !!! Either way you need to fix the code.
_ASSERTE(Thread::IsObjRefValid(&objref));
if ((objref.m_asObj != 0) &&
((IGCHeap*)GCHeapUtilities::GetGCHeap())->IsHeapPointer( (BYTE*)this ))
{
_ASSERTE(!"Write Barrier violation. Must use SetObjectReference() to assign OBJECTREF's into the GC heap!");
}
m_asObj = objref.m_asObj;