-
Notifications
You must be signed in to change notification settings - Fork 34
/
NormalizationCatalog.xml
688 lines (688 loc) · 64 KB
/
NormalizationCatalog.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
<Type Name="NormalizationCatalog" FullName="Microsoft.ML.NormalizationCatalog">
<TypeSignature Language="C#" Value="public static class NormalizationCatalog" />
<TypeSignature Language="ILAsm" Value=".class public auto ansi abstract sealed beforefieldinit NormalizationCatalog extends System.Object" />
<TypeSignature Language="DocId" Value="T:Microsoft.ML.NormalizationCatalog" />
<TypeSignature Language="VB.NET" Value="Public Module NormalizationCatalog" />
<TypeSignature Language="F#" Value="type NormalizationCatalog = class" />
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<Base>
<BaseTypeName>System.Object</BaseTypeName>
</Base>
<Interfaces />
<Docs>
<summary>
Collection of extension methods for <see cref="T:Microsoft.ML.TransformsCatalog" /> to create instances of numerical
normalization components.
</summary>
<remarks>To be added.</remarks>
</Docs>
<Members>
<Member MemberName="NormalizeBinning">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, int64 maximumExampleCount, bool fixZero, int32 maximumBinCount) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeBinning(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Int64,System.Boolean,System.Int32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * int -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeBinning (catalog, columns, maximumExampleCount, fixZero, maximumBinCount)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="maximumBinCount" Type="System.Int32" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="maximumBinCount">Maximum number of bins (power of 2 recommended).</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes by assigning the data into bins with equal density.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeBinning](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeBinningMulticolumn.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeBinning">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int64 maximumExampleCount, bool fixZero, int32 maximumBinCount) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeBinning(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean,System.Int32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeBinning : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * int -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeBinning (catalog, outputColumnName, inputColumnName, maximumExampleCount, fixZero, maximumBinCount)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="maximumBinCount" Type="System.Int32" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="maximumBinCount">Maximum number of bins (power of 2 recommended).</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes by assigning the data into bins with equal density.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeBinning](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeBinning.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeGlobalContrast">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator NormalizeGlobalContrast (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, bool ensureZeroMean = true, bool ensureUnitStandardDeviation = false, float scale = 1);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator NormalizeGlobalContrast(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, bool ensureZeroMean, bool ensureUnitStandardDeviation, float32 scale) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeGlobalContrast(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Boolean,System.Boolean,System.Single)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeGlobalContrast (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional ensureZeroMean As Boolean = true, Optional ensureUnitStandardDeviation As Boolean = false, Optional scale As Single = 1) As GlobalContrastNormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeGlobalContrast : Microsoft.ML.TransformsCatalog * string * string * bool * bool * single -> Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeGlobalContrast (catalog, outputColumnName, inputColumnName, ensureZeroMean, ensureUnitStandardDeviation, scale)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="ensureZeroMean" Type="System.Boolean" />
<Parameter Name="ensureUnitStandardDeviation" Type="System.Boolean" />
<Parameter Name="scale" Type="System.Single" />
</Parameters>
<Docs>
<param name="catalog">The transform's catalog.</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
This column's data type will be the same as the input column's data type.</param>
<param name="inputColumnName">Name of the column to normalize. If set to <see langword="null" />, the value of the
<paramref name="outputColumnName" /> will be used as source.
This estimator operates over known-sized vectors of <see cref="T:System.Single" />.</param>
<param name="ensureZeroMean">If <see langword="true" />, subtract mean from each value before normalizing and use the raw input otherwise.</param>
<param name="ensureUnitStandardDeviation">If <see langword="true" />, the resulting vector's standard deviation would be one.
Otherwise, the resulting vector's L2-norm would be one.</param>
<param name="scale">Scale features by this value.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator" />, which normalizes columns individually applying global contrast normalization.
Setting <paramref name="ensureZeroMean" /> to <see langword="true" />, will apply a pre-processing step to make the specified column's mean be the zero vector.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeGlobalContrast](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeGlobalContrast.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeLogMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool useCdf = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, int64 maximumExampleCount, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance (catalog, columns, maximumExampleCount, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="useCdf" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the logarithm of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
</Docs>
</Member>
<Member MemberName="NormalizeLogMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, bool fixZero, long maximumExampleCount = 1000000000, bool useCdf = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, bool fixZero, int64 maximumExampleCount, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Boolean,System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), fixZero As Boolean, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * bool * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance (catalog, columns, fixZero, maximumExampleCount, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" Index="0" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" Index="1" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="fixZero" Type="System.Boolean" Index="2" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="maximumExampleCount" Type="System.Int64" Index="3" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="useCdf" Type="System.Boolean" Index="4" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the logarithm of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
</Docs>
</Member>
<Member MemberName="NormalizeLogMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int64 maximumExampleCount, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance (catalog, outputColumnName, inputColumnName, maximumExampleCount, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="useCdf" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the logarithm of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeLogMeanVariance](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeLogMeanVariance.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeLogMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, bool fixZero, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, bool fixZero, string inputColumnName, int64 maximumExampleCount, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance(Microsoft.ML.TransformsCatalog,System.String,System.Boolean,System.String,System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, fixZero As Boolean, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * bool * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance (catalog, outputColumnName, fixZero, inputColumnName, maximumExampleCount, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" Index="0" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="outputColumnName" Type="System.String" Index="1" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="fixZero" Type="System.Boolean" Index="2" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="inputColumnName" Type="System.String" Index="3" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="maximumExampleCount" Type="System.Int64" Index="4" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="useCdf" Type="System.Boolean" Index="5" FrameworkAlternate="ml-dotnet;ml-dotnet-1.2.0;ml-dotnet-1.3.1;ml-dotnet-1.4.0;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the logarithm of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeLogMeanVariance](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeLogMeanVarianceFixZero.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeLpNorm">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.LpNormNormalizingEstimator NormalizeLpNorm (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction norm = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, bool ensureZeroMean = false);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.LpNormNormalizingEstimator NormalizeLpNorm(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, valuetype Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase/NormFunction norm, bool ensureZeroMean) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeLpNorm(Microsoft.ML.TransformsCatalog,System.String,System.String,Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeLpNorm (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional norm As LpNormNormalizingEstimatorBase.NormFunction = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, Optional ensureZeroMean As Boolean = false) As LpNormNormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeLpNorm : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction * bool -> Microsoft.ML.Transforms.LpNormNormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeLpNorm (catalog, outputColumnName, inputColumnName, norm, ensureZeroMean)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.LpNormNormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="norm" Type="Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction" />
<Parameter Name="ensureZeroMean" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform's catalog.</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
This column's data type will be the same as the input column's data type.</param>
<param name="inputColumnName">Name of the column to normalize. If set to <see langword="null" />, the value of the
<paramref name="outputColumnName" /> will be used as source.
This estimator operates over known-sized vectors of <see cref="T:System.Single" />.</param>
<param name="norm">Type of norm to use to normalize each sample. The indicated norm of the resulting vector will be normalized to one.</param>
<param name="ensureZeroMean">If <see langword="true" />, subtract mean from each value before normalizing and use the raw input otherwise.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.LpNormNormalizingEstimator" />, which normalizes (scales) vectors in the input column to the unit norm.
The type of norm that is used is defined by <paramref name="norm" />. Setting <paramref name="ensureZeroMean" /> to <see langword="true" />,
will apply a pre-processing step to make the specified column's mean be a zero vector.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeLpNorm](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeLpNorm.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, int64 maximumExampleCount, bool fixZero, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeMeanVariance(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Int64,System.Boolean,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeMeanVariance (catalog, columns, maximumExampleCount, fixZero, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="useCdf" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
</Docs>
</Member>
<Member MemberName="NormalizeMeanVariance">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int64 maximumExampleCount, bool fixZero, bool useCdf) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeMeanVariance(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeMeanVariance (catalog, outputColumnName, inputColumnName, maximumExampleCount, fixZero, useCdf)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="useCdf" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="useCdf">Whether to use CDF as the output.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the computed mean and variance of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeMeanVariance](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeMeanVariance.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeMinMax">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, int64 maximumExampleCount, bool fixZero) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeMinMax(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeMinMax (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeMinMax : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeMinMax (catalog, columns, maximumExampleCount, fixZero)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the observed minimum and maximum values of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeMinMax](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeMinMaxMulticolumn.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeMinMax">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int64 maximumExampleCount, bool fixZero) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeMinMax(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeMinMax (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeMinMax : Microsoft.ML.TransformsCatalog * string * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeMinMax (catalog, outputColumnName, inputColumnName, maximumExampleCount, fixZero)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes based on the observed minimum and maximum values of the data.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeMinMax](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeMinMax.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeRobustScaling">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, int64 maximumExampleCount, bool centerData, unsigned int32 quantileMin, unsigned int32 quantileMax) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeRobustScaling(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.Int64,System.Boolean,System.UInt32,System.UInt32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeRobustScaling (catalog, columns, maximumExampleCount, centerData, quantileMin, quantileMax)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" Index="0" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" Index="1" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="maximumExampleCount" Type="System.Int64" Index="2" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="centerData" Type="System.Boolean" Index="3" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="quantileMin" Type="System.UInt32" Index="4" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="quantileMax" Type="System.UInt32" Index="5" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="centerData">Whether to center the data around 0 be removing the median. Defaults to true.</param>
<param name="quantileMin">Quantile min used to scale the data. Defaults to 25.</param>
<param name="quantileMax">Quantile max used to scale the data. Defaults to 75.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales
the data according to the quantile range (defaults to the interquartile range).
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeBinning](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeBinningMulticolumn.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeRobustScaling">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int64 maximumExampleCount, bool centerData, unsigned int32 quantileMin, unsigned int32 quantileMax) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeRobustScaling(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean,System.UInt32,System.UInt32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeRobustScaling (catalog, outputColumnName, inputColumnName, maximumExampleCount, centerData, quantileMin, quantileMax)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" Index="0" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="outputColumnName" Type="System.String" Index="1" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="inputColumnName" Type="System.String" Index="2" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="maximumExampleCount" Type="System.Int64" Index="3" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="centerData" Type="System.Boolean" Index="4" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="quantileMin" Type="System.UInt32" Index="5" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
<Parameter Name="quantileMax" Type="System.UInt32" Index="6" FrameworkAlternate="ml-dotnet;ml-dotnet-1.5.0;ml-dotnet-1.6.0;ml-dotnet-1.7.0;ml-dotnet-2.0.0" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="centerData">Whether to center the data around 0 by removing the median. Defaults to true.</param>
<param name="quantileMin">Quantile min used to scale the data. Defaults to 25.</param>
<param name="quantileMax">Quantile max used to scale the data. Defaults to 75.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales
the data according to the quantile range (defaults to the interquartile range).
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeRobustScaling](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeSupervisedBinning.cs)]
]]></format>
</example>
</Docs>
</Member>
<Member MemberName="NormalizeSupervisedBinning">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning(class Microsoft.ML.TransformsCatalog catalog, class Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName, int64 maximumExampleCount, bool fixZero, int32 maximumBinCount, int32 mininimumExamplesPerBin) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeSupervisedBinning(Microsoft.ML.TransformsCatalog,Microsoft.ML.InputOutputColumnPair[],System.String,System.Int64,System.Boolean,System.Int32,System.Int32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeSupervisedBinning (catalog, columns, labelColumnName, maximumExampleCount, fixZero, maximumBinCount, mininimumExamplesPerBin)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="columns" Type="Microsoft.ML.InputOutputColumnPair[]" />
<Parameter Name="labelColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="maximumBinCount" Type="System.Int32" />
<Parameter Name="mininimumExamplesPerBin" Type="System.Int32" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="columns">The pairs of input and output columns.
The input columns must be of data type <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.
The data type for the output column will be the same as the associated input column.</param>
<param name="labelColumnName">Name of the label column for supervised binning.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="maximumBinCount">Maximum number of bins (power of 2 recommended).</param>
<param name="mininimumExamplesPerBin">Minimum number of examples per bin.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes by assigning the data into bins based on correlation with the <paramref name="labelColumnName" /> column.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
</Docs>
</Member>
<Member MemberName="NormalizeSupervisedBinning">
<MemberSignature Language="C#" Value="public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);" />
<MemberSignature Language="ILAsm" Value=".method public static hidebysig class Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning(class Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, string labelColumnName, int64 maximumExampleCount, bool fixZero, int32 maximumBinCount, int32 mininimumExamplesPerBin) cil managed" />
<MemberSignature Language="DocId" Value="M:Microsoft.ML.NormalizationCatalog.NormalizeSupervisedBinning(Microsoft.ML.TransformsCatalog,System.String,System.String,System.String,System.Int64,System.Boolean,System.Int32,System.Int32)" />
<MemberSignature Language="VB.NET" Value="<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator" />
<MemberSignature Language="F#" Value="static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * string * string * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator" Usage="Microsoft.ML.NormalizationCatalog.NormalizeSupervisedBinning (catalog, outputColumnName, inputColumnName, labelColumnName, maximumExampleCount, fixZero, maximumBinCount, mininimumExamplesPerBin)" />
<MemberType>Method</MemberType>
<AssemblyInfo>
<AssemblyName>Microsoft.ML.Transforms</AssemblyName>
<AssemblyVersion>1.0.0.0</AssemblyVersion>
</AssemblyInfo>
<ReturnValue>
<ReturnType>Microsoft.ML.Transforms.NormalizingEstimator</ReturnType>
</ReturnValue>
<Parameters>
<Parameter Name="catalog" Type="Microsoft.ML.TransformsCatalog" RefType="this" />
<Parameter Name="outputColumnName" Type="System.String" />
<Parameter Name="inputColumnName" Type="System.String" />
<Parameter Name="labelColumnName" Type="System.String" />
<Parameter Name="maximumExampleCount" Type="System.Int64" />
<Parameter Name="fixZero" Type="System.Boolean" />
<Parameter Name="maximumBinCount" Type="System.Int32" />
<Parameter Name="mininimumExamplesPerBin" Type="System.Int32" />
</Parameters>
<Docs>
<param name="catalog">The transform catalog</param>
<param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName" />.
The data type on this column is the same as the input column.</param>
<param name="inputColumnName">Name of the column to transform. If set to <see langword="null" />, the value of the <paramref name="outputColumnName" /> will be used as source.
The data type on this column should be <see cref="T:System.Single" />, <see cref="T:System.Double" /> or a known-sized vector of those types.</param>
<param name="labelColumnName">Name of the label column for supervised binning.</param>
<param name="maximumExampleCount">Maximum number of examples used to train the normalizer.</param>
<param name="fixZero">Whether to map zero to zero, preserving sparsity.</param>
<param name="maximumBinCount">Maximum number of bins (power of 2 recommended).</param>
<param name="mininimumExamplesPerBin">Minimum number of examples per bin.</param>
<summary>
Create a <see cref="T:Microsoft.ML.Transforms.NormalizingEstimator" />, which normalizes by assigning the data into bins based on correlation with the <paramref name="labelColumnName" /> column.
</summary>
<returns>To be added.</returns>
<remarks>To be added.</remarks>
<example>
<format type="text/markdown"><![CDATA[
[!code-csharp[NormalizeBinning](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/NormalizeSupervisedBinning.cs)]
]]></format>
</example>
</Docs>
</Member>
</Members>
</Type>