@@ -23,7 +23,7 @@ namespace Microsoft.ML.Tests.TrainerEstimators
23
23
public partial class TrainerEstimators : TestDataPipeBase
24
24
{
25
25
/// <summary>
26
- /// FastTreeBinaryClassification TrainerEstimator test
26
+ /// FastTreeBinaryClassification TrainerEstimator test
27
27
/// </summary>
28
28
[ Fact ]
29
29
public void FastTreeBinaryEstimator ( )
@@ -67,7 +67,7 @@ public void LightGBMBinaryEstimator()
67
67
}
68
68
69
69
/// <summary>
70
- /// LightGBMBinaryTrainer CorrectSigmoid test
70
+ /// LightGBMBinaryTrainer CorrectSigmoid test
71
71
/// </summary>
72
72
[ LightGBMFact ]
73
73
public void LightGBMBinaryEstimatorCorrectSigmoid ( )
@@ -132,7 +132,7 @@ public void FastForestClassificationEstimator()
132
132
}
133
133
134
134
/// <summary>
135
- /// FastTreeRankingTrainer TrainerEstimator test
135
+ /// FastTreeRankingTrainer TrainerEstimator test
136
136
/// </summary>
137
137
[ Fact ]
138
138
public void FastTreeRankerEstimator ( )
@@ -156,7 +156,7 @@ public void FastTreeRankerEstimator()
156
156
}
157
157
158
158
/// <summary>
159
- /// LightGbmRankingTrainer TrainerEstimator test
159
+ /// LightGbmRankingTrainer TrainerEstimator test
160
160
/// </summary>
161
161
[ LightGBMFact ]
162
162
public void LightGBMRankerEstimator ( )
@@ -174,7 +174,7 @@ public void LightGBMRankerEstimator()
174
174
}
175
175
176
176
/// <summary>
177
- /// FastTreeRegressor TrainerEstimator test
177
+ /// FastTreeRegressor TrainerEstimator test
178
178
/// </summary>
179
179
[ Fact ]
180
180
public void FastTreeRegressorEstimator ( )
@@ -189,7 +189,7 @@ public void FastTreeRegressorEstimator()
189
189
}
190
190
191
191
/// <summary>
192
- /// LightGbmRegressionTrainer TrainerEstimator test
192
+ /// LightGbmRegressionTrainer TrainerEstimator test
193
193
/// </summary>
194
194
[ LightGBMFact ]
195
195
public void LightGBMRegressorEstimator ( )
@@ -209,7 +209,7 @@ public void LightGBMRegressorEstimator()
209
209
210
210
211
211
/// <summary>
212
- /// RegressionGamTrainer TrainerEstimator test
212
+ /// RegressionGamTrainer TrainerEstimator test
213
213
/// </summary>
214
214
[ Fact ]
215
215
public void GAMRegressorEstimator ( )
@@ -227,7 +227,7 @@ public void GAMRegressorEstimator()
227
227
}
228
228
229
229
/// <summary>
230
- /// FastTreeTweedieTrainer TrainerEstimator test
230
+ /// FastTreeTweedieTrainer TrainerEstimator test
231
231
/// </summary>
232
232
[ Fact ]
233
233
public void TweedieRegressorEstimator ( )
@@ -246,7 +246,7 @@ public void TweedieRegressorEstimator()
246
246
}
247
247
248
248
/// <summary>
249
- /// FastForestRegression TrainerEstimator test
249
+ /// FastForestRegression TrainerEstimator test
250
250
/// </summary>
251
251
[ Fact ]
252
252
public void FastForestRegressorEstimator ( )
@@ -265,7 +265,7 @@ public void FastForestRegressorEstimator()
265
265
}
266
266
267
267
/// <summary>
268
- /// LightGbmMulticlass TrainerEstimator test
268
+ /// LightGbmMulticlass TrainerEstimator test
269
269
/// </summary>
270
270
[ LightGBMFact ]
271
271
public void LightGbmMulticlassEstimator ( )
@@ -298,7 +298,7 @@ public void LightGbmMulticlassEstimatorWithOptions()
298
298
}
299
299
300
300
/// <summary>
301
- /// LightGbmMulticlass CorrectSigmoid test
301
+ /// LightGbmMulticlass CorrectSigmoid test
302
302
/// </summary>
303
303
[ LightGBMFact ]
304
304
public void LightGbmMulticlassEstimatorCorrectSigmoid ( )
@@ -366,7 +366,7 @@ private void LightGbmHelper(bool useSoftmax, double sigmoid, out string modelStr
366
366
var mlContext = new MLContext ( seed : 0 ) ;
367
367
var dataView = mlContext . Data . LoadFromEnumerable ( dataList ) ;
368
368
int numberOfTrainingIterations = 3 ;
369
- var gbmTrainer = new LightGbmMulticlassTrainer ( mlContext ,
369
+ var gbmTrainer = new LightGbmMulticlassTrainer ( mlContext ,
370
370
new LightGbmMulticlassTrainer . Options
371
371
{
372
372
NumberOfIterations = numberOfTrainingIterations ,
@@ -683,7 +683,7 @@ private void CheckSummary(ICanGetSummaryAsIDataView modelParameters, double bias
683
683
var quantileTrees = trees as IReadOnlyList < QuantileRegressionTree > ;
684
684
var summaryDataView = modelParameters . GetSummaryDataView ( null ) ;
685
685
IEnumerable < SummaryDataRow > summaryDataEnumerable ;
686
-
686
+
687
687
if ( quantileTrees == null )
688
688
summaryDataEnumerable = ML . Data . CreateEnumerable < SummaryDataRow > ( summaryDataView , true ) ;
689
689
else
@@ -769,7 +769,7 @@ public void FastTreeTweedieRegressorTestSummary()
769
769
Done ( ) ;
770
770
}
771
771
772
- [ Fact ]
772
+ [ LightGBMFact ]
773
773
public void LightGbmRegressorTestSummary ( )
774
774
{
775
775
var dataView = GetRegressionPipeline ( ) ;
@@ -823,7 +823,7 @@ public void FastForestBinaryClassificationTestSummary()
823
823
Done ( ) ;
824
824
}
825
825
826
- [ Fact ]
826
+ [ LightGBMFact ]
827
827
public void LightGbmBinaryClassificationTestSummary ( )
828
828
{
829
829
var ( pipeline , dataView ) = GetBinaryClassificationPipeline ( ) ;
0 commit comments