diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsoleAppProgramCSFileContentTest.approved.txt b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsoleAppProgramCSFileContentTest.approved.txt index 2156b23bb7..3ed75ad9e5 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsoleAppProgramCSFileContentTest.approved.txt +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsoleAppProgramCSFileContentTest.approved.txt @@ -42,7 +42,7 @@ namespace TestNamespace.ConsoleApp private static ModelInput CreateSingleDataSample(string dataFilePath) { // Create MLContext - MLContext mlContext = new MLContext(1); + MLContext mlContext = new MLContext(); // Load dataset IDataView dataView = mlContext.Data.LoadFromTextFile( diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsumeModelContentTest.approved.txt b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsumeModelContentTest.approved.txt index 22f82a1c97..cc84f0f161 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsumeModelContentTest.approved.txt +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.ConsumeModelContentTest.approved.txt @@ -21,7 +21,7 @@ namespace TestNamespace.Model { // Create new MLContext - MLContext mlContext = new MLContext(1); + MLContext mlContext = new MLContext(); // Load model & create prediction engine string modelPath = AppDomain.CurrentDomain.BaseDirectory + "MLModel.zip"; diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.PredictionProgramCSFileContentTest.approved.txt b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.PredictionProgramCSFileContentTest.approved.txt index 2156b23bb7..3ed75ad9e5 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.PredictionProgramCSFileContentTest.approved.txt +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.PredictionProgramCSFileContentTest.approved.txt @@ -42,7 +42,7 @@ namespace TestNamespace.ConsoleApp private static ModelInput CreateSingleDataSample(string dataFilePath) { // Create MLContext - MLContext mlContext = new MLContext(1); + MLContext mlContext = new MLContext(); // Load dataset IDataView dataView = mlContext.Data.LoadFromTextFile( diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateConsoleAppProjectContents_VerifyPredictProgram.approved.txt b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateConsoleAppProjectContents_VerifyPredictProgram.approved.txt index c367470b79..abc02fa615 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateConsoleAppProjectContents_VerifyPredictProgram.approved.txt +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateConsoleAppProjectContents_VerifyPredictProgram.approved.txt @@ -39,7 +39,7 @@ namespace TestNamespace.ConsoleApp private static ModelInput CreateSingleDataSample(string dataFilePath) { // Create MLContext - MLContext mlContext = new MLContext(1); + MLContext mlContext = new MLContext(); // Load dataset IDataView dataView = mlContext.Data.LoadFromTextFile( diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateModelProjectContents_VerifyConsumeModel.approved.txt b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateModelProjectContents_VerifyConsumeModel.approved.txt index 22f82a1c97..cc84f0f161 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateModelProjectContents_VerifyConsumeModel.approved.txt +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.Recommendation_GenerateModelProjectContents_VerifyConsumeModel.approved.txt @@ -21,7 +21,7 @@ namespace TestNamespace.Model { // Create new MLContext - MLContext mlContext = new MLContext(1); + MLContext mlContext = new MLContext(); // Load model & create prediction engine string modelPath = AppDomain.CurrentDomain.BaseDirectory + "MLModel.zip"; diff --git a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.cs b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.cs index 17b23291b0..5a31997876 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.cs +++ b/test/Microsoft.ML.CodeGenerator.Tests/ApprovalTests/ConsoleCodeGeneratorTests.cs @@ -294,7 +294,7 @@ private CodeGenerator PrepareForRecommendationTask() { if (mockedPipeline == null) { - MLContext context = new MLContext(1); + MLContext context = new MLContext(); var trainer1 = new SuggestedTrainer(context, new MatrixFactorizationExtension(), new ColumnInformation() { LabelColumnName = "Label", @@ -335,7 +335,7 @@ private CodeGenerator PrepareForRecommendationTask() { if (mockedPipeline == null) { - MLContext context = new MLContext(1); + MLContext context = new MLContext(); // same learners with different hyperparams var hyperparams1 = new Microsoft.ML.AutoML.ParameterSet(new List() { new LongParameterValue("NumLeaves", 2) }); var trainer1 = new SuggestedTrainer(context, new LightGbmBinaryExtension(), new ColumnInformation(), hyperparams1); @@ -372,7 +372,7 @@ private CodeGenerator PrepareForRecommendationTask() { if (mockedPipeline == null) { - MLContext context = new MLContext(1); + MLContext context = new MLContext(); // same learners with different hyperparams var hyperparams1 = new Microsoft.ML.AutoML.ParameterSet(new List() { new LongParameterValue("NumLeaves", 2) }); var trainer1 = new SuggestedTrainer(context, new LightGbmRegressionExtension(), new ColumnInformation(), hyperparams1); @@ -409,7 +409,7 @@ private CodeGenerator PrepareForRecommendationTask() { if (mockedOvaPipeline == null) { - MLContext context = new MLContext(1); + MLContext context = new MLContext(); // same learners with different hyperparams var hyperparams1 = new Microsoft.ML.AutoML.ParameterSet(new List() { new LongParameterValue("NumLeaves", 2) }); var trainer1 = new SuggestedTrainer(context, new FastForestOvaExtension(), new ColumnInformation(), hyperparams1); diff --git a/test/Microsoft.ML.CodeGenerator.Tests/CodeGenTests.cs b/test/Microsoft.ML.CodeGenerator.Tests/CodeGenTests.cs index f2ee5eb501..816b08da68 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/CodeGenTests.cs +++ b/test/Microsoft.ML.CodeGenerator.Tests/CodeGenTests.cs @@ -17,7 +17,7 @@ public class CodeGeneratorTests [Fact] public void TrainerGeneratorBasicNamedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -37,7 +37,7 @@ public void TrainerGeneratorBasicNamedParameterTest() [Fact] public void TrainerGeneratorBasicAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -58,7 +58,7 @@ public void TrainerGeneratorBasicAdvancedParameterTest() [Fact] public void TransformGeneratorBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("Normalizing", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -72,7 +72,7 @@ public void TransformGeneratorBasicTest() [Fact] public void TransformGeneratorUsingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("OneHotEncoding", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -117,7 +117,7 @@ public void ClassLabelGenerationBasicTest() [Fact] public void TrainerComplexParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { diff --git a/test/Microsoft.ML.CodeGenerator.Tests/TrainerGeneratorTests.cs b/test/Microsoft.ML.CodeGenerator.Tests/TrainerGeneratorTests.cs index ebe1e4c43b..0145d6e7f2 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/TrainerGeneratorTests.cs +++ b/test/Microsoft.ML.CodeGenerator.Tests/TrainerGeneratorTests.cs @@ -18,7 +18,7 @@ public class TrainerGeneratorTests public void CultureInvariantTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -46,7 +46,7 @@ public void CultureInvariantTest() public void LightGbmBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -67,7 +67,7 @@ public void LightGbmBinaryBasicTest() public void LightGbmBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -90,7 +90,7 @@ public void LightGbmBinaryAdvancedParameterTest() public void SymbolicSgdLogisticRegressionBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("SymbolicSgdLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -107,7 +107,7 @@ public void SymbolicSgdLogisticRegressionBinaryBasicTest() public void SymbolicSgdLogisticRegressionBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -127,7 +127,7 @@ public void SymbolicSgdLogisticRegressionBinaryAdvancedParameterTest() [Fact] public void SgdCalibratedBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("SgdCalibratedBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -144,7 +144,7 @@ public void SgdCalibratedBinaryBasicTest() public void SgdCalibratedBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -164,7 +164,7 @@ public void SgdCalibratedBinaryAdvancedParameterTest() [Fact] public void SdcaLogisticRegressionBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("SdcaLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -181,7 +181,7 @@ public void SdcaLogisticRegressionBinaryBasicTest() public void SdcaLogisticRegressionBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -201,7 +201,7 @@ public void SdcaLogisticRegressionBinaryAdvancedParameterTest() [Fact] public void SdcaMaximumEntropyMultiBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("SdcaMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -218,7 +218,7 @@ public void SdcaMaximumEntropyMultiBasicTest() public void SdcaMaximumEntropyMultiAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -238,7 +238,7 @@ public void SdcaMaximumEntropyMultiAdvancedParameterTest() [Fact] public void SdcaRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("SdcaRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -255,7 +255,7 @@ public void SdcaRegressionBasicTest() public void SdcaRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -275,7 +275,7 @@ public void SdcaRegressionAdvancedParameterTest() [Fact] public void MatrixFactorizationBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("MatrixFactorization", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -289,7 +289,7 @@ public void MatrixFactorizationBasicTest() [Fact] public void MatrixFactorizationAdvancedTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { {"MatrixColumnIndexColumnName","userId" }, @@ -308,7 +308,7 @@ public void MatrixFactorizationAdvancedTest() [Fact] public void LbfgsPoissonRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("LbfgsPoissonRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -325,7 +325,7 @@ public void LbfgsPoissonRegressionBasicTest() public void LbfgsPoissonRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -345,7 +345,7 @@ public void LbfgsPoissonRegressionAdvancedParameterTest() [Fact] public void OlsRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("OlsRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -362,7 +362,7 @@ public void OlsRegressionBasicTest() public void OlsRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -382,7 +382,7 @@ public void OlsRegressionAdvancedParameterTest() [Fact] public void OnlineGradientDescentRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -399,7 +399,7 @@ public void OnlineGradientDescentRegressionBasicTest() public void OnlineGradientDescentRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -419,7 +419,7 @@ public void OnlineGradientDescentRegressionAdvancedParameterTest() [Fact] public void LbfgsLogisticRegressionBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("LbfgsLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -436,7 +436,7 @@ public void LbfgsLogisticRegressionBinaryBasicTest() public void LbfgsLogisticRegressionBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -456,7 +456,7 @@ public void LbfgsLogisticRegressionBinaryAdvancedParameterTest() [Fact] public void LbfgsMaximumEntropyMultiMultiBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("LbfgsMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -473,7 +473,7 @@ public void LbfgsMaximumEntropyMultiMultiBasicTest() public void LbfgsMaximumEntropyMultiAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -493,7 +493,7 @@ public void LbfgsMaximumEntropyMultiAdvancedParameterTest() [Fact] public void LinearSvmBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("LinearSvmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -510,7 +510,7 @@ public void LinearSvmBinaryBasicTest() public void LinearSvmBinaryParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -531,7 +531,7 @@ public void LinearSvmBinaryParameterTest() [Fact] public void FastTreeTweedieRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("FastTreeTweedieRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -548,7 +548,7 @@ public void FastTreeTweedieRegressionBasicTest() public void FastTreeTweedieRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -569,7 +569,7 @@ public void FastTreeTweedieRegressionAdvancedParameterTest() [Fact] public void FastTreeRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("FastTreeRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -586,7 +586,7 @@ public void FastTreeRegressionBasicTest() public void FastTreeRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -607,7 +607,7 @@ public void FastTreeRegressionAdvancedParameterTest() [Fact] public void FastTreeBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("FastTreeBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -624,7 +624,7 @@ public void FastTreeBinaryBasicTest() public void FastTreeBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -645,7 +645,7 @@ public void FastTreeBinaryAdvancedParameterTest() [Fact] public void FastForestRegressionBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("FastForestRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -661,7 +661,7 @@ public void FastForestRegressionBasicTest() [Fact] public void FastForestRegressionAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -682,7 +682,7 @@ public void FastForestRegressionAdvancedParameterTest() [Fact] public void FastForestBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("FastForestBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -699,7 +699,7 @@ public void FastForestBinaryBasicTest() public void FastForestBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { @@ -720,7 +720,7 @@ public void FastForestBinaryAdvancedParameterTest() [Fact] public void AveragedPerceptronBinaryBasicTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("AveragedPerceptronBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties); @@ -737,7 +737,7 @@ public void AveragedPerceptronBinaryBasicTest() public void AveragedPerceptronBinaryAdvancedParameterTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary() { diff --git a/test/Microsoft.ML.CodeGenerator.Tests/TransformGeneratorTests.cs b/test/Microsoft.ML.CodeGenerator.Tests/TransformGeneratorTests.cs index d4ad99f60b..875b93f84e 100644 --- a/test/Microsoft.ML.CodeGenerator.Tests/TransformGeneratorTests.cs +++ b/test/Microsoft.ML.CodeGenerator.Tests/TransformGeneratorTests.cs @@ -15,7 +15,7 @@ public class TransformGeneratorTests [Fact] public void MissingValueReplacingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary();//categorical PipelineNode node = new PipelineNode("MissingValueReplacing", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -29,7 +29,7 @@ public void MissingValueReplacingTest() [Fact] public void OneHotEncodingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary();//categorical PipelineNode node = new PipelineNode("OneHotEncoding", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -43,7 +43,7 @@ public void OneHotEncodingTest() [Fact] public void NormalizingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("Normalizing", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1_copy" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -57,7 +57,7 @@ public void NormalizingTest() [Fact] public void ColumnConcatenatingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("ColumnConcatenating", PipelineNodeType.Transform, new string[] { "numeric_column_1", "numeric_column_2" }, new string[] { "Features" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -71,7 +71,7 @@ public void ColumnConcatenatingTest() [Fact] public void ColumnCopyingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary();//nume to num feature 2 PipelineNode node = new PipelineNode("ColumnCopying", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_2" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -85,7 +85,7 @@ public void ColumnCopyingTest() [Fact] public void KeyToValueMappingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("KeyToValueMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -99,7 +99,7 @@ public void KeyToValueMappingTest() [Fact] public void MissingValueIndicatingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary();//numeric feature PipelineNode node = new PipelineNode("MissingValueIndicating", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -113,7 +113,7 @@ public void MissingValueIndicatingTest() [Fact] public void OneHotHashEncodingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("OneHotHashEncoding", PipelineNodeType.Transform, new string[] { "Categorical_column_1" }, new string[] { "Categorical_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -127,7 +127,7 @@ public void OneHotHashEncodingTest() [Fact] public void TextFeaturizingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("TextFeaturizing", PipelineNodeType.Transform, new string[] { "Text_column_1" }, new string[] { "Text_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -141,7 +141,7 @@ public void TextFeaturizingTest() [Fact] public void TypeConvertingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("TypeConverting", PipelineNodeType.Transform, new string[] { "I4_column_1" }, new string[] { "R4_column_1" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node }); @@ -155,7 +155,7 @@ public void TypeConvertingTest() [Fact] public void ValueToKeyMappingTest() { - var context = new MLContext(1); + var context = new MLContext(); var elementProperties = new Dictionary(); PipelineNode node = new PipelineNode("ValueToKeyMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties); Pipeline pipeline = new Pipeline(new PipelineNode[] { node });