You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: ZBaselines/Common/EntryPoints/core_ep-list.tsv
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -23,7 +23,6 @@ Models.Summarizer Summarize a linear regression predictor. Microsoft.ML.Runtime.
23
23
Models.TrainTestBinaryEvaluatorTrain test for binary classificationMicrosoft.ML.Runtime.EntryPoints.TrainTestBinaryMacroTrainTestBinaryMicrosoft.ML.Runtime.EntryPoints.TrainTestBinaryMacro+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.Runtime.EntryPoints.TrainTestBinaryMacro+Output]
24
24
Models.TrainTestEvaluatorGeneral train test for any supported evaluatorMicrosoft.ML.Runtime.EntryPoints.TrainTestMacroTrainTestMicrosoft.ML.Runtime.EntryPoints.TrainTestMacro+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.Runtime.EntryPoints.TrainTestMacro+Output]
25
25
Trainers.AveragedPerceptronBinaryClassifierTrain a Average perceptron.Microsoft.ML.Runtime.Learners.AveragedPerceptronTrainerTrainBinaryMicrosoft.ML.Runtime.Learners.AveragedPerceptronTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
26
-
Trainers.BinaryLogisticRegressorTrain a logistic regression binary modelMicrosoft.ML.Runtime.Learners.LogisticRegressionTrainBinaryMicrosoft.ML.Runtime.Learners.LogisticRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
27
26
Trainers.FastForestBinaryClassifierUses a random forest learner to perform binary classification.Microsoft.ML.Runtime.FastTree.FastForestTrainBinaryMicrosoft.ML.Runtime.FastTree.FastForestClassification+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
28
27
Trainers.FastForestRegressorTrains a random forest to fit target values using least-squares.Microsoft.ML.Runtime.FastTree.FastForestTrainRegressionMicrosoft.ML.Runtime.FastTree.FastForestRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
29
28
Trainers.FastTreeBinaryClassifierUses a logit-boost boosted tree learner to perform binary classification.Microsoft.ML.Runtime.FastTree.FastTreeTrainBinaryMicrosoft.ML.Runtime.FastTree.FastTreeBinaryClassificationTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
@@ -34,7 +33,8 @@ Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stum
34
33
Trainers.GeneralizedAdditiveModelRegressorTrains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features.Microsoft.ML.Runtime.FastTree.GamTrainRegressionMicrosoft.ML.Runtime.FastTree.RegressionGamTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
35
34
Trainers.KMeansPlusPlusClustererK-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers.Microsoft.ML.Runtime.KMeans.KMeansPlusPlusTrainerTrainKMeansMicrosoft.ML.Runtime.KMeans.KMeansPlusPlusTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+ClusteringOutput
36
35
Trainers.LinearSvmBinaryClassifierTrain a linear SVM.Microsoft.ML.Runtime.Learners.LinearSvmTrainLinearSvmMicrosoft.ML.Runtime.Learners.LinearSvm+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
37
-
Trainers.LogisticRegressorTrain a logistic regression multi class modelMicrosoft.ML.Runtime.Learners.LogisticRegressionTrainMultiClassMicrosoft.ML.Runtime.Learners.MulticlassLogisticRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
36
+
Trainers.LogisticRegressionBinaryClassifierTrain a logistic regression binary modelMicrosoft.ML.Runtime.Learners.LogisticRegressionTrainBinaryMicrosoft.ML.Runtime.Learners.LogisticRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
37
+
Trainers.LogisticRegressionClassifierTrain a logistic regression multi class modelMicrosoft.ML.Runtime.Learners.LogisticRegressionTrainMultiClassMicrosoft.ML.Runtime.Learners.MulticlassLogisticRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
38
38
Trainers.NaiveBayesClassifierTrain a MultiClassNaiveBayesTrainer.Microsoft.ML.Runtime.Learners.MultiClassNaiveBayesTrainerTrainMultiClassNaiveBayesTrainerMicrosoft.ML.Runtime.Learners.MultiClassNaiveBayesTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
39
39
Trainers.OnlineGradientDescentRegressorTrain a Online gradient descent perceptron.Microsoft.ML.Runtime.Learners.OnlineGradientDescentTrainerTrainRegressionMicrosoft.ML.Runtime.Learners.OnlineGradientDescentTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
40
40
Trainers.OrdinaryLeastSquaresRegressorTrain an OLS regression model.Microsoft.ML.Runtime.Learners.OlsLinearRegressionTrainerTrainRegressionMicrosoft.ML.Runtime.Learners.OlsLinearRegressionTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
0 commit comments