-
Notifications
You must be signed in to change notification settings - Fork 797
/
Copy pathSynExpr.fs
1214 lines (1065 loc) · 51 KB
/
SynExpr.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
namespace FSharp.Compiler.Syntax
open System
open FSharp.Compiler.SyntaxTrivia
open FSharp.Compiler.Text
[<RequireQualifiedAccess>]
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module SynExpr =
let (|Last|) = List.last
/// Matches if the two values refer to the same object.
[<return: Struct>]
let inline (|Is|_|) (inner1: 'a) (inner2: 'a) =
if obj.ReferenceEquals(inner1, inner2) then
ValueSome Is
else
ValueNone
/// Represents a symbolic infix operator with the precedence of *, /, or %.
/// All instances of this type are considered equal.
[<CustomComparison; CustomEquality>]
type MulDivMod =
| Mul
| Div
| Mod
member _.CompareTo(_other: MulDivMod) = 0
override this.Equals obj = this.CompareTo(unbox obj) = 0
override _.GetHashCode() = 0
interface IComparable with
member this.CompareTo obj = this.CompareTo(unbox obj)
/// Represents a symbolic infix operator with the precedence of + or -.
/// All instances of this type are considered equal.
[<CustomComparison; CustomEquality>]
type AddSub =
| Add
| Sub
member _.CompareTo(_other: AddSub) = 0
override this.Equals obj = this.CompareTo(unbox obj) = 0
override _.GetHashCode() = 0
interface IComparable with
member this.CompareTo obj = this.CompareTo(unbox obj)
/// Holds a symbolic operator's original notation.
/// Equality is based on the contents of the string.
/// Comparison always returns 0.
[<CustomComparison; CustomEquality>]
type OriginalNotation =
| OriginalNotation of string
member _.CompareTo(_other: OriginalNotation) = 0
override this.Equals obj =
match this, obj with
| OriginalNotation this, (:? OriginalNotation as OriginalNotation other) -> String.Equals(this, other, StringComparison.Ordinal)
| _ -> false
override this.GetHashCode() =
match this with
| OriginalNotation notation -> notation.GetHashCode()
interface IComparable with
member this.CompareTo obj = this.CompareTo(unbox obj)
/// Represents an expression's precedence.
/// Comparison is based only on the precedence case.
/// Equality considers the embedded original notation, if any.
///
/// For example:
///
/// compare (AddSub (Add, OriginalNotation "+")) (AddSub (Add, OriginalNotation "++")) = 0
///
/// but
///
/// AddSub (Add, OriginalNotation "+") <> AddSub (Add, OriginalNotation "++")
type Precedence =
/// yield, yield!, return, return!
| Low
/// <-
| Set
/// :=
| ColonEquals
/// ,
| Comma
/// or, ||
///
/// Refers to the exact operators or and ||.
/// Instances with leading dots or question marks or trailing characters are parsed as Bar instead.
| BarBar of OriginalNotation
/// &, &&
///
/// Refers to the exact operators & and &&.
/// Instances with leading dots or question marks or trailing characters are parsed as Amp instead.
| AmpAmp of OriginalNotation
/// :>, :?>
| UpcastDowncast
/// =…, |…, &…, $…, >…, <…, !=…
| Relational of OriginalNotation
/// ^…, @…
| HatAt
/// ::
| Cons
/// :?
| TypeTest
/// +…, -…
| AddSub of AddSub * OriginalNotation
/// *…, /…, %…
| MulDivMod of MulDivMod * OriginalNotation
/// **…
| Exp
/// - x
| UnaryPrefix
/// f x
| Apply
/// -x, !… x, ~~… x
| High
// x.y
| Dot
/// Associativity/association.
type Assoc =
/// Non-associative or no association.
| Non
/// Left-associative or left-hand association.
| Left
/// Right-associative or right-hand association.
| Right
module Assoc =
let ofPrecedence precedence =
match precedence with
| Low -> Non
| Set -> Non
| ColonEquals -> Right
| Comma -> Non
| BarBar _ -> Left
| AmpAmp _ -> Left
| UpcastDowncast -> Right
| Relational _ -> Left
| HatAt -> Right
| Cons -> Right
| TypeTest -> Non
| AddSub _ -> Left
| MulDivMod _ -> Left
| Exp -> Right
| UnaryPrefix -> Left
| Apply -> Left
| High -> Left
| Dot -> Left
/// See atomicExprAfterType in pars.fsy.
[<return: Struct>]
let (|AtomicExprAfterType|_|) expr =
match expr with
| SynExpr.Paren _
| SynExpr.Quote _
| SynExpr.Const _
| SynExpr.Tuple(isStruct = true)
| SynExpr.Record _
| SynExpr.AnonRecd _
| SynExpr.InterpolatedString _
| SynExpr.Null _
| SynExpr.ArrayOrList(isArray = true)
| SynExpr.ArrayOrListComputed(isArray = true) -> ValueSome AtomicExprAfterType
| _ -> ValueNone
/// Matches if the given expression represents a high-precedence
/// function application, e.g.,
///
/// f x
///
/// (+) x y
[<return: Struct>]
let (|HighPrecedenceApp|_|) expr =
match expr with
| SynExpr.App(isInfix = false; funcExpr = SynExpr.Ident _)
| SynExpr.App(isInfix = false; funcExpr = SynExpr.LongIdent _)
| SynExpr.App(isInfix = false; funcExpr = SynExpr.App(isInfix = false)) -> ValueSome HighPrecedenceApp
| _ -> ValueNone
module FuncExpr =
/// Matches when the given funcExpr is a direct application
/// of a symbolic operator, e.g., -, _not_ (~-).
[<return: Struct>]
let (|SymbolicOperator|_|) funcExpr =
match funcExpr with
| SynExpr.LongIdent(longDotId = SynLongIdent(trivia = trivia)) ->
let rec tryPick =
function
| [] -> ValueNone
| Some(IdentTrivia.OriginalNotation op) :: _ -> ValueSome op
| _ :: rest -> tryPick rest
tryPick trivia
| _ -> ValueNone
/// Matches when the given expression is a prefix operator application, e.g.,
///
/// -x
///
/// ~~~x
[<return: Struct>]
let (|PrefixApp|_|) expr : Precedence voption =
match expr with
| SynExpr.App(isInfix = false; funcExpr = funcExpr & FuncExpr.SymbolicOperator op; argExpr = argExpr) ->
if funcExpr.Range.IsAdjacentTo argExpr.Range then
ValueSome High
else
assert (op.Length > 0)
match op[0] with
| '!'
| '~' -> ValueSome High
| _ -> ValueSome UnaryPrefix
| SynExpr.AddressOf(expr = expr; opRange = opRange) ->
if opRange.IsAdjacentTo expr.Range then
ValueSome High
else
ValueSome UnaryPrefix
| _ -> ValueNone
/// Tries to parse the given original notation as a symbolic infix operator.
[<return: Struct>]
let (|SymbolPrec|_|) (originalNotation: string) =
// Trim any leading dots or question marks from the given symbolic operator.
// Leading dots or question marks have no effect on operator precedence or associativity
// with the exception of &, &&, and ||.
let ignoredLeadingChars = ".?".AsSpan()
let trimmed = originalNotation.AsSpan().TrimStart ignoredLeadingChars
assert (trimmed.Length > 0)
match trimmed[0], originalNotation with
| _, ":=" -> ValueSome ColonEquals
| _, ("||" | "or") -> ValueSome(BarBar(OriginalNotation originalNotation))
| _, ("&" | "&&") -> ValueSome(AmpAmp(OriginalNotation originalNotation))
| '|', _
| '&', _
| '<', _
| '>', _
| '=', _
| '$', _ -> ValueSome(Relational(OriginalNotation originalNotation))
| '!', _ when trimmed.Length > 1 && trimmed[1] = '=' -> ValueSome(Relational(OriginalNotation originalNotation))
| '^', _
| '@', _ -> ValueSome HatAt
| _, "::" -> ValueSome Cons
| '+', _ -> ValueSome(AddSub(Add, OriginalNotation originalNotation))
| '-', _ -> ValueSome(AddSub(Sub, OriginalNotation originalNotation))
| '/', _ -> ValueSome(MulDivMod(Div, OriginalNotation originalNotation))
| '%', _ -> ValueSome(MulDivMod(Mod, OriginalNotation originalNotation))
| '*', _ when trimmed.Length > 1 && trimmed[1] = '*' -> ValueSome Exp
| '*', _ -> ValueSome(MulDivMod(Mul, OriginalNotation originalNotation))
| _ -> ValueNone
[<return: Struct>]
let (|Contains|_|) (c: char) (s: string) =
if s.IndexOf c >= 0 then ValueSome Contains else ValueNone
/// Any expressions in which the removal of parens would
/// lead to something like the following that would be
/// confused by the parser with a type parameter application:
///
/// x<y>z
///
/// x<y,y>z
[<return: Struct>]
let rec (|ConfusableWithTypeApp|_|) synExpr =
match synExpr with
| SynExpr.Paren(expr = ConfusableWithTypeApp)
| SynExpr.App(funcExpr = ConfusableWithTypeApp)
| SynExpr.App(isInfix = true; funcExpr = FuncExpr.SymbolicOperator(Contains '>'); argExpr = ConfusableWithTypeApp) ->
ValueSome ConfusableWithTypeApp
| SynExpr.App(isInfix = true; funcExpr = funcExpr & FuncExpr.SymbolicOperator(Contains '<'); argExpr = argExpr) when
argExpr.Range.IsAdjacentTo funcExpr.Range
->
ValueSome ConfusableWithTypeApp
| SynExpr.Tuple(exprs = exprs) ->
let rec anyButLast =
function
| _ :: []
| [] -> ValueNone
| ConfusableWithTypeApp :: _ -> ValueSome ConfusableWithTypeApp
| _ :: tail -> anyButLast tail
anyButLast exprs
| _ -> ValueNone
/// Matches when the expression represents the infix application of a symbolic operator.
///
/// (x λ y) ρ z
///
/// x λ (y ρ z)
[<return: Struct>]
let (|InfixApp|_|) synExpr : struct (Precedence * Assoc) voption =
match synExpr with
| SynExpr.App(funcExpr = SynExpr.App(isInfix = true; funcExpr = FuncExpr.SymbolicOperator(SymbolPrec prec))) ->
ValueSome(prec, Right)
| SynExpr.App(isInfix = true; funcExpr = FuncExpr.SymbolicOperator(SymbolPrec prec)) -> ValueSome(prec, Left)
| SynExpr.Upcast _
| SynExpr.Downcast _ -> ValueSome(UpcastDowncast, Left)
| SynExpr.TypeTest _ -> ValueSome(TypeTest, Left)
| _ -> ValueNone
/// Returns the given expression's precedence and the side of the inner expression,
/// if applicable.
[<return: Struct>]
let (|OuterBinaryExpr|_|) inner outer : struct (Precedence * Assoc) voption =
match outer with
| SynExpr.YieldOrReturn _
| SynExpr.YieldOrReturnFrom _ -> ValueSome(Low, Right)
| SynExpr.Tuple(exprs = SynExpr.Paren(expr = Is inner) :: _) -> ValueSome(Comma, Left)
| SynExpr.Tuple _ -> ValueSome(Comma, Right)
| InfixApp(Cons, side) -> ValueSome(Cons, side)
| SynExpr.Assert _
| SynExpr.Lazy _
| SynExpr.InferredUpcast _
| SynExpr.InferredDowncast _ -> ValueSome(Apply, Non)
| PrefixApp prec -> ValueSome(prec, Non)
| InfixApp(prec, side) -> ValueSome(prec, side)
| SynExpr.App(argExpr = SynExpr.ComputationExpr _) -> ValueSome(UnaryPrefix, Left)
| SynExpr.App(funcExpr = SynExpr.Paren(expr = SynExpr.App _)) -> ValueSome(Apply, Left)
| SynExpr.App(flag = ExprAtomicFlag.Atomic) -> ValueSome(Dot, Non)
| SynExpr.App _ -> ValueSome(Apply, Non)
| SynExpr.DotSet(targetExpr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Dot, Left)
| SynExpr.DotSet(rhsExpr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Set, Right)
| SynExpr.DotIndexedSet(objectExpr = SynExpr.Paren(expr = Is inner))
| SynExpr.DotNamedIndexedPropertySet(targetExpr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Dot, Left)
| SynExpr.DotIndexedSet(valueExpr = SynExpr.Paren(expr = Is inner))
| SynExpr.DotNamedIndexedPropertySet(rhsExpr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Set, Right)
| SynExpr.LongIdentSet(expr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Set, Right)
| SynExpr.Set _ -> ValueSome(Set, Non)
| SynExpr.DotGet _ -> ValueSome(Dot, Left)
| SynExpr.DotIndexedGet(objectExpr = SynExpr.Paren(expr = Is inner)) -> ValueSome(Dot, Left)
| _ -> ValueNone
/// Matches a SynExpr.App nested in a sequence of dot-gets.
///
/// x.M.N().O
[<return: Struct>]
let (|NestedApp|_|) expr =
let rec loop =
function
| SynExpr.DotGet(expr = expr)
| SynExpr.DotIndexedGet(objectExpr = expr) -> loop expr
| SynExpr.App _ -> ValueSome NestedApp
| _ -> ValueNone
loop expr
/// Returns the given expression's precedence, if applicable.
[<return: Struct>]
let (|InnerBinaryExpr|_|) expr : Precedence voption =
match expr with
| SynExpr.Tuple(isStruct = false) -> ValueSome Comma
| SynExpr.DotGet(expr = NestedApp)
| SynExpr.DotIndexedGet(objectExpr = NestedApp) -> ValueSome Apply
| SynExpr.DotGet _
| SynExpr.DotIndexedGet _ -> ValueSome Dot
| PrefixApp prec -> ValueSome prec
| InfixApp(prec, _) -> ValueSome prec
| SynExpr.App _
| SynExpr.Assert _
| SynExpr.Lazy _
| SynExpr.For _
| SynExpr.ForEach _
| SynExpr.While _
| SynExpr.Do _
| SynExpr.New _
| SynExpr.InferredUpcast _
| SynExpr.InferredDowncast _ -> ValueSome Apply
| SynExpr.DotIndexedSet _
| SynExpr.DotNamedIndexedPropertySet _
| SynExpr.DotSet _ -> ValueSome Set
| _ -> ValueNone
module Dangling =
/// Returns the first matching nested right-hand target expression, if any.
let private dangling (target: SynExpr -> SynExpr option) =
let (|Target|_|) = target
let rec loop expr =
match expr with
| Target expr -> ValueSome expr
| SynExpr.Tuple(isStruct = false; exprs = Last expr)
| SynExpr.App(argExpr = expr)
| SynExpr.IfThenElse(elseExpr = Some expr)
| SynExpr.IfThenElse(ifExpr = expr)
| SynExpr.Sequential(expr2 = expr)
| SynExpr.YieldOrReturn(expr = expr)
| SynExpr.YieldOrReturnFrom(expr = expr)
| SynExpr.Set(rhsExpr = expr)
| SynExpr.DotSet(rhsExpr = expr)
| SynExpr.DotNamedIndexedPropertySet(rhsExpr = expr)
| SynExpr.DotIndexedSet(valueExpr = expr)
| SynExpr.LongIdentSet(expr = expr)
| SynExpr.LetOrUse(body = expr)
| SynExpr.Lambda(body = expr)
| SynExpr.Match(clauses = Last(SynMatchClause(resultExpr = expr)))
| SynExpr.MatchLambda(matchClauses = Last(SynMatchClause(resultExpr = expr)))
| SynExpr.MatchBang(clauses = Last(SynMatchClause(resultExpr = expr)))
| SynExpr.TryWith(withCases = Last(SynMatchClause(resultExpr = expr)))
| SynExpr.TryFinally(finallyExpr = expr)
| SynExpr.Do(expr = expr)
| SynExpr.DoBang(expr = expr) -> loop expr
| _ -> ValueNone
loop
/// Matches a dangling if-then construct.
[<return: Struct>]
let (|IfThen|_|) =
dangling (function
| SynExpr.IfThenElse _ as expr -> Some expr
| _ -> None)
/// Matches a dangling let or use construct.
[<return: Struct>]
let (|LetOrUse|_|) =
dangling (function
| SynExpr.LetOrUse _
| SynExpr.LetOrUseBang _ as expr -> Some expr
| _ -> None)
/// Matches a dangling sequential expression.
[<return: Struct>]
let (|Sequential|_|) =
dangling (function
| SynExpr.Sequential _ as expr -> Some expr
| _ -> None)
/// Matches a dangling try-with or try-finally construct.
[<return: Struct>]
let (|Try|_|) =
dangling (function
| SynExpr.TryWith _
| SynExpr.TryFinally _ as expr -> Some expr
| _ -> None)
/// Matches a dangling match-like construct.
[<return: Struct>]
let (|Match|_|) =
dangling (function
| SynExpr.Match _
| SynExpr.MatchBang _
| SynExpr.MatchLambda _
| SynExpr.TryWith _
| SynExpr.Lambda _ as expr -> Some expr
| _ -> None)
/// Matches a dangling arrow-sensitive construct.
[<return: Struct>]
let (|ArrowSensitive|_|) =
dangling (function
| SynExpr.Match _
| SynExpr.MatchBang _
| SynExpr.MatchLambda _
| SynExpr.TryWith _
| SynExpr.Lambda _
| SynExpr.Typed _
| SynExpr.TypeTest _
| SynExpr.Upcast _
| SynExpr.Downcast _ as expr -> Some expr
| _ -> None)
/// Matches a nested dangling construct that could become problematic
/// if the surrounding parens were removed.
[<return: Struct>]
let (|Problematic|_|) =
dangling (function
| SynExpr.Lambda _
| SynExpr.MatchLambda _
| SynExpr.Match _
| SynExpr.MatchBang _
| SynExpr.TryWith _
| SynExpr.TryFinally _
| SynExpr.IfThenElse _
| SynExpr.Sequential _
| SynExpr.LetOrUse _
| SynExpr.Set _
| SynExpr.LongIdentSet _
| SynExpr.DotIndexedSet _
| SynExpr.DotNamedIndexedPropertySet _
| SynExpr.DotSet _
| SynExpr.NamedIndexedPropertySet _ as expr -> Some expr
| _ -> None)
/// Indicates whether the expression with the given range
/// includes indentation that would be invalid
/// in context if it were not wrapped in parentheses.
let containsSensitiveIndentation (getSourceLineStr: int -> string) outerOffsidesColumn (range: range) =
let startLine = range.StartLine
let endLine = range.EndLine
if startLine = endLine then
range.StartColumn <= outerOffsidesColumn
else
let rec loop offsides lineNo (startCol: int) =
if lineNo <= endLine then
let line = getSourceLineStr lineNo
match offsides with
| ValueNone ->
let i = line.AsSpan(startCol).IndexOfAnyExcept(' ', ')')
if i >= 0 then
let newOffsides = i + startCol
newOffsides <= outerOffsidesColumn
|| loop (ValueSome newOffsides) (lineNo + 1) 0
else
loop offsides (lineNo + 1) 0
| ValueSome offsidesCol ->
let i = line.AsSpan(0, min offsidesCol line.Length).IndexOfAnyExcept(' ', ')')
if i >= 0 && i < offsidesCol then
let slice = line.AsSpan(i, min (offsidesCol - i) (line.Length - i))
let j = slice.IndexOfAnyExcept("*/%-+:^@><=!|0$.?".AsSpan())
let lo = i + (if j >= 0 && slice[j] = ' ' then j else 0)
lo < offsidesCol - 1
|| lo <= outerOffsidesColumn
|| loop offsides (lineNo + 1) 0
else
loop offsides (lineNo + 1) 0
else
false
loop ValueNone startLine range.StartColumn
/// Matches constructs that are sensitive to
/// certain kinds of undentation in sequential expressions.
[<return: Struct>]
let (|UndentationSensitive|_|) expr =
match expr with
| SynExpr.TryWith _
| SynExpr.TryFinally _
| SynExpr.For _
| SynExpr.ForEach _
| SynExpr.IfThenElse _
| SynExpr.Match _
| SynExpr.While _
| SynExpr.Do _ -> ValueSome UndentationSensitive
| _ -> ValueNone
let rec shouldBeParenthesizedInContext (getSourceLineStr: int -> string) path expr : bool =
let shouldBeParenthesizedInContext = shouldBeParenthesizedInContext getSourceLineStr
let containsSensitiveIndentation = containsSensitiveIndentation getSourceLineStr
let (|StartsWith|) (s: string) = s[0]
// Matches if the given expression starts with a symbol, e.g., <@ … @>, $"…", @"…", +1, -1…
let (|StartsWithSymbol|_|) =
let (|TextStartsWith|) (m: range) =
let line = getSourceLineStr m.StartLine
line[m.StartColumn]
function
| SynExpr.Quote _
| SynExpr.InterpolatedString _
| SynExpr.Const(SynConst.String(synStringKind = SynStringKind.Verbatim), _)
| SynExpr.Const(SynConst.Byte _, TextStartsWith '+')
| SynExpr.Const(SynConst.UInt16 _, TextStartsWith '+')
| SynExpr.Const(SynConst.UInt32 _, TextStartsWith '+')
| SynExpr.Const(SynConst.UInt64 _, TextStartsWith '+')
| SynExpr.Const(SynConst.UIntPtr _, TextStartsWith '+')
| SynExpr.Const(SynConst.SByte _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Int16 _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Int32 _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Int64 _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.IntPtr _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Decimal _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Double _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Single _, TextStartsWith('-' | '+'))
| SynExpr.Const(SynConst.Measure(_, TextStartsWith('-' | '+'), _, _), _)
| SynExpr.Const(SynConst.UserNum(StartsWith('-' | '+'), _), _) -> Some StartsWithSymbol
| _ -> None
// Matches if the given expression is a numeric literal
// that it is safe to "dot into," e.g., 1l, 0b1, 1e10, 1d, 1.0…
let (|DotSafeNumericLiteral|_|) =
/// 1l, 1d, 0b1, 0x1, 0o1, 1e10…
let (|TextContainsLetter|_|) (m: range) =
let line = getSourceLineStr m.StartLine
let span = line.AsSpan(m.StartColumn, m.EndColumn - m.StartColumn)
if span.LastIndexOfAnyInRange('A', 'z') >= 0 then
Some TextContainsLetter
else
None
// 1.0…
let (|TextEndsWithNumber|_|) (m: range) =
let line = getSourceLineStr m.StartLine
let span = line.AsSpan(m.StartColumn, m.EndColumn - m.StartColumn)
if Char.IsDigit span[span.Length - 1] then
Some TextEndsWithNumber
else
None
function
| SynExpr.Const(SynConst.Byte _, _)
| SynExpr.Const(SynConst.UInt16 _, _)
| SynExpr.Const(SynConst.UInt32 _, _)
| SynExpr.Const(SynConst.UInt64 _, _)
| SynExpr.Const(SynConst.UIntPtr _, _)
| SynExpr.Const(SynConst.SByte _, _)
| SynExpr.Const(SynConst.Int16 _, _)
| SynExpr.Const(SynConst.Int32 _, TextContainsLetter)
| SynExpr.Const(SynConst.Int64 _, _)
| SynExpr.Const(SynConst.IntPtr _, _)
| SynExpr.Const(SynConst.Decimal _, _)
| SynExpr.Const(SynConst.Double _, (TextEndsWithNumber | TextContainsLetter))
| SynExpr.Const(SynConst.Single _, _)
| SynExpr.Const(SynConst.Measure _, _)
| SynExpr.Const(SynConst.UserNum _, _) -> Some DotSafeNumericLiteral
| _ -> None
match expr, path with
// Parens must stay around binary equals expressions in argument
// position lest they be interpreted as named argument assignments:
//
// o.M((x = y))
// o.N((x = y), z)
//
// Likewise, double parens must stay around a tuple, since we don't know whether
// the method being invoked might have a signature like
//
// val TryGetValue : 'Key * outref<'Value> -> bool
//
// where 'Key is 'a * 'b, in which case the double parens are required.
| SynExpr.Paren(expr = InfixApp(Relational(OriginalNotation "="), _)),
SyntaxNode.SynExpr(SynExpr.App(funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _
| InfixApp(Relational(OriginalNotation "="), _),
SyntaxNode.SynExpr(SynExpr.Paren _) :: SyntaxNode.SynExpr(SynExpr.App(
funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _
| InfixApp(Relational(OriginalNotation "="), _),
SyntaxNode.SynExpr(SynExpr.Tuple(isStruct = false)) :: SyntaxNode.SynExpr(SynExpr.Paren _) :: SyntaxNode.SynExpr(SynExpr.App(
funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _
| SynExpr.Paren(expr = SynExpr.Tuple(isStruct = false)),
SyntaxNode.SynExpr(SynExpr.App(funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _
| SynExpr.Tuple(isStruct = false),
SyntaxNode.SynExpr(SynExpr.Paren _) :: SyntaxNode.SynExpr(SynExpr.App(
funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _
| SynExpr.Const(SynConst.Unit, _),
SyntaxNode.SynExpr(SynExpr.App(funcExpr = SynExpr.LongIdent _ | SynExpr.DotGet _ | SynExpr.Ident _)) :: _ -> true
// Already parenthesized.
| _, SyntaxNode.SynExpr(SynExpr.Paren _) :: _ -> false
// Parens must stay around indentation that would otherwise be invalid:
//
// let _ = (x
// +y)
| _, SyntaxNode.SynBinding(SynBinding(trivia = trivia)) :: _ when
containsSensitiveIndentation trivia.LeadingKeyword.Range.StartColumn expr.Range
->
true
// Parens must stay around indentation that would otherwise be invalid:
//
// return (
// x
// )
| _, SyntaxNode.SynExpr(SynExpr.YieldOrReturn _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.YieldOrReturnFrom _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Assert _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Lazy _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.App(argExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.LetOrUse _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.LetOrUseBang _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.TryWith _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.TryFinally _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.For _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.ForEach _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.IfThenElse _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.New _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Set(rhsExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.DotIndexedSet(valueExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.DotNamedIndexedPropertySet(rhsExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.DotSet(rhsExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.LibraryOnlyUnionCaseFieldSet(rhsExpr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.LongIdentSet(expr = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.NamedIndexedPropertySet(expr2 = SynExpr.Paren(expr = Is expr)) as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.InferredUpcast _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.InferredDowncast _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Match _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.MatchBang _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.While _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.WhileBang _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Do _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.DoBang _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Fixed _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.Record _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.AnonRecd _ as outer) :: _
| _, SyntaxNode.SynExpr(SynExpr.InterpolatedString _ as outer) :: _ when
containsSensitiveIndentation outer.Range.StartColumn expr.Range
->
true
// Hanging tuples:
//
// let _ =
// (
// 1, 2,
// 3, 4
// )
//
// or
//
// [
// 1, 2,
// 3, 4
// (1, 2,
// 3, 4)
// ]
| SynExpr.Tuple(isStruct = false; exprs = exprs; range = range), _ when
range.StartLine <> range.EndLine
&& exprs |> List.exists (fun e -> e.Range.StartColumn < range.StartColumn)
->
true
// There are certain constructs whose indentation in
// a sequential expression is valid when parenthesized
// (and separated from the following expression by a semicolon),
// but where the parsing of the outer expression would change if
// the parentheses were removed in place, e.g.,
//
// [
// (if p then q else r); // Cannot remove in place because of the indentation of y below.
// y
// ]
//
// or
//
// [
// x;
// (if p then q else r); // Cannot remove in place because of the indentation of x above.
// z
// ]
//
// This analysis is imperfect in that it sometimes requires parens when they
// may not be required, but the only way to know for sure in such cases would be to walk up
// an unknown number of ancestral sequential expressions to check for problematic
// indentation (or to keep track of the offsides line throughout the AST traversal):
//
// [
// x; // This line's indentation means we cannot remove below.
// (…);
// (…);
// (* 𝑛 more such lines. *)
// (…);
// (…);
// (if p then q else r); // Can no longer remove here because of the indentation of x above.
// z
// ]
| UndentationSensitive,
SyntaxNode.SynExpr(SynExpr.Sequential(expr1 = SynExpr.Paren(expr = Is expr))) :: SyntaxNode.SynExpr(SynExpr.Sequential(
expr1 = SynExpr.Paren(expr = other) | other)) :: _
| UndentationSensitive,
SyntaxNode.SynExpr(SynExpr.Sequential(expr1 = SynExpr.Paren(expr = Is expr); expr2 = other)) :: SyntaxNode.SynExpr(SynExpr.Sequential _) :: _
| UndentationSensitive,
SyntaxNode.SynExpr(SynExpr.Sequential(expr1 = SynExpr.Paren(expr = Is expr); expr2 = other)) :: SyntaxNode.SynExpr(SynExpr.ArrayOrListComputed _) :: _
| UndentationSensitive,
SyntaxNode.SynExpr(SynExpr.Sequential(expr1 = SynExpr.Paren(expr = Is expr); expr2 = other)) :: SyntaxNode.SynExpr(SynExpr.ArrayOrList _) :: _
| UndentationSensitive,
SyntaxNode.SynExpr(SynExpr.Sequential(expr1 = SynExpr.Paren(expr = Is expr); expr2 = other)) :: SyntaxNode.SynExpr(SynExpr.ComputationExpr _) :: _ when
expr.Range.StartLine <> other.Range.StartLine
&& expr.Range.StartColumn <= other.Range.StartColumn
->
true
// Check for nested matches, e.g.,
//
// match … with … -> (…, match … with … -> … | … -> …) | … -> …
| _, SyntaxNode.SynMatchClause _ :: path -> shouldBeParenthesizedInContext path expr
// We always need parens for trait calls, e.g.,
//
// let inline f x = (^a : (static member Parse : string -> ^a) x)
| SynExpr.TraitCall _, _ -> true
// Don't touch library-only stuff:
//
// (# "ldlen.multi 2 0" array : int #)
| SynExpr.LibraryOnlyILAssembly _, _
| SynExpr.LibraryOnlyStaticOptimization _, _
| SynExpr.LibraryOnlyUnionCaseFieldGet _, _
| SynExpr.LibraryOnlyUnionCaseFieldSet _, _ -> true
// Parens are otherwise never required for binding bodies or for top-level expressions, e.g.,
//
// let x = (…)
// _.member X = (…)
// (printfn "Hello, world.")
| _, SyntaxNode.SynBinding _ :: _
| _, SyntaxNode.SynModule _ :: _ -> false
// Parens must be kept when there is a high-precedence function application
// before a prefix operator application before another expression that starts with a symbol, e.g.,
//
// id -(-x)
// id -(-1y)
// id -($"")
// id -(@"")
// id -(<@ ValueNone @>)
// let (~+) _ = true in assert +($"{true}")
| (PrefixApp _ | StartsWithSymbol),
SyntaxNode.SynExpr(SynExpr.App _) :: SyntaxNode.SynExpr(HighPrecedenceApp | SynExpr.Assert _ | SynExpr.InferredUpcast _ | SynExpr.InferredDowncast _) :: _ ->
true
// Parens must be kept in a scenario like
//
// !x.M(y)
// ~~~x.M(y)
//
// since prefix ! or ~~~ (with no space) have higher
// precedence than regular function application.
| _, SyntaxNode.SynExpr(SynExpr.App _) :: SyntaxNode.SynExpr(PrefixApp High) :: _ -> true
// Parens are never required around suffixed or infixed numeric literals, e.g.,
//
// (1l).ToString()
// (1uy).ToString()
// (0b1).ToString()
// (1e10).ToString()
// (1.0).ToString()
| DotSafeNumericLiteral, _ -> false
// Parens are required around bare decimal ints or doubles ending
// in dots when being dotted into, e.g.,
//
// (1).ToString()
// (1.).ToString()
| SynExpr.Const(constant = SynConst.Int32 _ | SynConst.Double _), SyntaxNode.SynExpr(SynExpr.DotGet _) :: _ -> true
// Parens are required around join conditions:
//
// join … on (… = …)
| SynExpr.App _, SyntaxNode.SynExpr(SynExpr.App _) :: SyntaxNode.SynExpr(SynExpr.JoinIn _) :: _ -> true
// Parens are not required around a few anointed expressions after inherit:
//
// inherit T(3)
// inherit T(null)
// inherit T("")
// …
| AtomicExprAfterType, SyntaxNode.SynMemberDefn(SynMemberDefn.ImplicitInherit _) :: _ -> false
// Parens are otherwise required in inherit T(x), etc.
| _, SyntaxNode.SynMemberDefn(SynMemberDefn.ImplicitInherit _) :: _ -> true
// We can't remove parens when they're required for fluent calls:
//
// x.M(y).N z
// x.M(y).[z]
// _.M(x)
// (f x)[z]
// (f(x))[z]
// x.M(y)[z]
// M(x).N <- y
| SynExpr.App _, SyntaxNode.SynExpr(SynExpr.App(argExpr = SynExpr.ArrayOrListComputed(isArray = false))) :: _ -> true
| _, SyntaxNode.SynExpr(SynExpr.App _) :: path
| _, SyntaxNode.SynExpr(OuterBinaryExpr expr (Dot, _)) :: SyntaxNode.SynExpr(SynExpr.App _) :: path when
let rec appChainDependsOnDotOrPseudoDotPrecedence path =
match path with
| SyntaxNode.SynExpr(SynExpr.DotGet _) :: _
| SyntaxNode.SynExpr(SynExpr.DotLambda _) :: _
| SyntaxNode.SynExpr(SynExpr.DotIndexedGet _) :: _
| SyntaxNode.SynExpr(SynExpr.Set _) :: _
| SyntaxNode.SynExpr(SynExpr.DotSet _) :: _
| SyntaxNode.SynExpr(SynExpr.DotIndexedSet _) :: _
| SyntaxNode.SynExpr(SynExpr.DotNamedIndexedPropertySet _) :: _
| SyntaxNode.SynExpr(SynExpr.App(argExpr = SynExpr.ArrayOrListComputed(isArray = false))) :: _ -> true
| SyntaxNode.SynExpr(SynExpr.App _) :: path -> appChainDependsOnDotOrPseudoDotPrecedence path
| _ -> false
appChainDependsOnDotOrPseudoDotPrecedence path
->
true
// The :: operator is parsed differently from other symbolic infix operators,
// so we need to give it special treatment.
// Outer right:
//
// (x) :: xs
// (x * y) :: zs
// …
| _,
SyntaxNode.SynExpr(SynExpr.Tuple(isStruct = false; exprs = [ SynExpr.Paren _; _ ])) :: (SyntaxNode.SynExpr(SynExpr.App(
isInfix = true)) :: _ as path) -> shouldBeParenthesizedInContext path expr
// Outer left:
//
// x :: (xs)
// x :: (ys @ zs)
// …
| argExpr,
SyntaxNode.SynExpr(SynExpr.Tuple(isStruct = false; exprs = [ _; SynExpr.Paren _ ])) :: SyntaxNode.SynExpr(SynExpr.App(
isInfix = true) as outer) :: path ->
shouldBeParenthesizedInContext
(SyntaxNode.SynExpr(SynExpr.App(ExprAtomicFlag.NonAtomic, false, outer, argExpr, outer.Range))
:: path)
expr
// Ordinary nested expressions.
| inner, SyntaxNode.SynExpr outer :: outerPath ->
let dangling expr =
match expr with
| Dangling.Problematic subExpr ->
match outer with
| SynExpr.Tuple(exprs = exprs) -> not (obj.ReferenceEquals(subExpr, List.last exprs))
| InfixApp(_, Left) -> true
| _ -> shouldBeParenthesizedInContext outerPath subExpr
| _ -> false
let problematic (exprRange: range) (delimiterRange: range) =
exprRange.EndLine = delimiterRange.EndLine
&& exprRange.EndColumn < delimiterRange.StartColumn
let anyProblematic matchOrTryRange clauses =
let rec loop =
function
| [] -> false
| SynMatchClause(trivia = trivia) :: clauses ->
trivia.BarRange |> Option.exists (problematic matchOrTryRange)
|| trivia.ArrowRange |> Option.exists (problematic matchOrTryRange)
|| loop clauses
loop clauses
let innerBindingsWouldShadowOuter expr1 (expr2: SynExpr) =
let identsBoundInInner =
(Set.empty, [ SyntaxNode.SynExpr expr1 ])
||> SyntaxNodes.fold (fun idents _path node ->
match node with
| SyntaxNode.SynPat(SynPat.Named(ident = SynIdent(ident = ident))) -> idents.Add ident.idText
| _ -> idents)
if identsBoundInInner.IsEmpty then
false
else
(expr2.Range.End, [ SyntaxNode.SynExpr expr2 ])
||> SyntaxNodes.exists (fun _path node ->
match node with
| SyntaxNode.SynExpr(SynExpr.Ident ident) -> identsBoundInInner.Contains ident.idText
| _ -> false)
match outer, inner with
| ConfusableWithTypeApp, _ -> true
| SynExpr.IfThenElse(trivia = trivia), Dangling.LetOrUse letOrUse ->
Position.posLt letOrUse.Range.Start trivia.ThenKeyword.Start
| SynExpr.IfThenElse(trivia = trivia), Dangling.IfThen dangling
| SynExpr.IfThenElse(trivia = trivia), Dangling.Match dangling ->
problematic dangling.Range trivia.ThenKeyword
|| trivia.ElseKeyword |> Option.exists (problematic dangling.Range)
| SynExpr.IfThenElse(ifExpr = expr), Dangling.Sequential dangling
| SynExpr.While(whileExpr = expr), Dangling.Problematic dangling
| SynExpr.ForEach(enumExpr = expr), Dangling.Problematic dangling -> Range.rangeContainsRange expr.Range dangling.Range
| SynExpr.TryFinally(trivia = trivia), Dangling.Try tryExpr when problematic tryExpr.Range trivia.FinallyKeyword -> true
| SynExpr.Match(clauses = clauses; trivia = { WithKeyword = withKeyword }), Dangling.ArrowSensitive dangling when
problematic dangling.Range withKeyword || anyProblematic dangling.Range clauses
->
true