forked from davidsandberg/facenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_attribute_vectors.py
200 lines (168 loc) · 8.69 KB
/
calculate_attribute_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# MIT License
#
# Copyright (c) 2017 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Calculate average latent variables (here called attribute vectors)
for the different attributes in CelebA
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import sys
import argparse
import importlib
import facenet
import os
import numpy as np
import math
import time
import h5py
from six import iteritems
def main(args):
img_mean = np.array([134.10714722, 102.52040863, 87.15436554])
img_stddev = np.sqrt(np.array([3941.30175781, 2856.94287109, 2519.35791016]))
vae_checkpoint = os.path.expanduser(args.vae_checkpoint)
fields, attribs_dict = read_annotations(args.annotations_filename)
vae_def = importlib.import_module(args.vae_def)
vae = vae_def.Vae(args.latent_var_size)
gen_image_size = vae.get_image_size()
with tf.Graph().as_default():
tf.set_random_seed(args.seed)
image_list = facenet.get_image_paths(os.path.expanduser(args.data_dir))
# Get attributes for images
nrof_attributes = len(fields)
attribs_list = []
for img in image_list:
key = os.path.split(img)[1].split('.')[0]
attr = attribs_dict[key]
assert len(attr)==nrof_attributes
attribs_list.append(attr)
# Create the input queue
index_list = range(len(image_list))
input_queue = tf.train.slice_input_producer([image_list, attribs_list, index_list], num_epochs=1, shuffle=False)
nrof_preprocess_threads = 4
image_per_thread = []
for _ in range(nrof_preprocess_threads):
filename = input_queue[0]
file_contents = tf.read_file(filename)
image = tf.image.decode_image(file_contents, channels=3)
image = tf.image.resize_image_with_crop_or_pad(image, 160, 160)
#image = tf.image.resize_images(image, (64,64))
image.set_shape((args.image_size, args.image_size, 3))
attrib = input_queue[1]
attrib.set_shape((nrof_attributes,))
image = tf.cast(image, tf.float32)
image_per_thread.append([image, attrib, input_queue[2]])
images, attribs, indices = tf.train.batch_join(
image_per_thread, batch_size=args.batch_size,
shapes=[(args.image_size, args.image_size, 3), (nrof_attributes,), ()], enqueue_many=False,
capacity=4 * nrof_preprocess_threads * args.batch_size,
allow_smaller_final_batch=True)
# Normalize
images_norm = (images-img_mean) / img_stddev
# Resize to appropriate size for the encoder
images_norm_resize = tf.image.resize_images(images_norm, (gen_image_size,gen_image_size))
# Create encoder network
mean, log_variance = vae.encoder(images_norm_resize, True)
epsilon = tf.random_normal((tf.shape(mean)[0], args.latent_var_size))
std = tf.exp(log_variance/2)
latent_var = mean + epsilon * std
# Create a saver
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
# Start running operations on the Graph
gpu_memory_fraction = 1.0
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord, sess=sess)
with sess.as_default():
if vae_checkpoint:
print('Restoring VAE checkpoint: %s' % vae_checkpoint)
saver.restore(sess, vae_checkpoint)
nrof_images = len(image_list)
nrof_batches = int(math.ceil(len(image_list) / args.batch_size))
latent_vars = np.zeros((nrof_images, args.latent_var_size))
attributes = np.zeros((nrof_images, nrof_attributes))
for i in range(nrof_batches):
start_time = time.time()
latent_var_, attribs_, indices_ = sess.run([latent_var, attribs, indices])
latent_vars[indices_,:] = latent_var_
attributes[indices_,:] = attribs_
duration = time.time() - start_time
print('Batch %d/%d: %.3f seconds' % (i+1, nrof_batches, duration))
# NOTE: This will print the 'Out of range' warning if the last batch is not full,
# as described by https://github.com/tensorflow/tensorflow/issues/8330
# Calculate average change in the latent variable when each attribute changes
attribute_vectors = np.zeros((nrof_attributes, args.latent_var_size), np.float32)
for i in range(nrof_attributes):
pos_idx = np.argwhere(attributes[:,i]==1)[:,0]
neg_idx = np.argwhere(attributes[:,i]==-1)[:,0]
pos_avg = np.mean(latent_vars[pos_idx,:], 0)
neg_avg = np.mean(latent_vars[neg_idx,:], 0)
attribute_vectors[i,:] = pos_avg - neg_avg
filename = os.path.expanduser(args.output_filename)
print('Writing attribute vectors, latent variables and attributes to %s' % filename)
mdict = {'latent_vars':latent_vars, 'attributes':attributes,
'fields':fields, 'attribute_vectors':attribute_vectors }
with h5py.File(filename, 'w') as f:
for key, value in iteritems(mdict):
f.create_dataset(key, data=value)
def read_annotations(filename):
attribs = {}
with open(filename, 'r') as f:
for i, line in enumerate(f.readlines()):
if i==0:
continue # First line is the number of entries in the file
elif i==1:
fields = line.strip().split() # Second line is the field names
else:
line = line.split()
img_name = line[0].split('.')[0]
img_attribs = map(int, line[1:])
attribs[img_name] = img_attribs
return fields, attribs
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('vae_def', type=str,
help='Model definition for the variational autoencoder. Points to a module containing the definition.',
default='src.generative.models.dfc_vae')
parser.add_argument('vae_checkpoint', type=str,
help='Checkpoint file of a pre-trained variational autoencoder.')
parser.add_argument('data_dir', type=str,
help='Path to the directory containing aligned face patches for the CelebA dataset.')
parser.add_argument('annotations_filename', type=str,
help='Path to the annotations file',
default='/media/deep/datasets/CelebA/Anno/list_attr_celeba.txt')
parser.add_argument('output_filename', type=str,
help='Filename to use for the file containing the attribute vectors.')
parser.add_argument('--batch_size', type=int,
help='Number of images to process in a batch.', default=128)
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=64)
parser.add_argument('--latent_var_size', type=int,
help='Dimensionality of the latent variable.', default=100)
parser.add_argument('--seed', type=int,
help='Random seed.', default=666)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))