forked from donnemartin/data-science-ipython-notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add TensorFlow multilayer perceptrons notebook.
- Loading branch information
1 parent
46bf758
commit b424fe0
Showing
2 changed files
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
253 changes: 253 additions & 0 deletions
253
deep-learning/tensor-flow-examples/notebooks/3_neural_networks/multilayer_perceptron.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Multilayer Perceptron in TensorFlow\n", | ||
"\n", | ||
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n", | ||
"\n", | ||
"## Setup\n", | ||
"\n", | ||
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n", | ||
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", | ||
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", | ||
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Import MINST data\n", | ||
"import input_data\n", | ||
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import tensorflow as tf" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Parameters\n", | ||
"learning_rate = 0.001\n", | ||
"training_epochs = 15\n", | ||
"batch_size = 100\n", | ||
"display_step = 1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Network Parameters\n", | ||
"n_hidden_1 = 256 # 1st layer num features\n", | ||
"n_hidden_2 = 256 # 2nd layer num features\n", | ||
"n_input = 784 # MNIST data input (img shape: 28*28)\n", | ||
"n_classes = 10 # MNIST total classes (0-9 digits)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# tf Graph input\n", | ||
"x = tf.placeholder(\"float\", [None, n_input])\n", | ||
"y = tf.placeholder(\"float\", [None, n_classes])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create model\n", | ||
"def multilayer_perceptron(_X, _weights, _biases):\n", | ||
" #Hidden layer with RELU activation\n", | ||
" layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) \n", | ||
" #Hidden layer with RELU activation\n", | ||
" layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) \n", | ||
" return tf.matmul(layer_2, weights['out']) + biases['out']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Store layers weight & bias\n", | ||
"weights = {\n", | ||
" 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),\n", | ||
" 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),\n", | ||
" 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))\n", | ||
"}\n", | ||
"biases = {\n", | ||
" 'b1': tf.Variable(tf.random_normal([n_hidden_1])),\n", | ||
" 'b2': tf.Variable(tf.random_normal([n_hidden_2])),\n", | ||
" 'out': tf.Variable(tf.random_normal([n_classes]))\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Construct model\n", | ||
"pred = multilayer_perceptron(x, weights, biases)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Define loss and optimizer\n", | ||
"# Softmax loss\n", | ||
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) \n", | ||
"# Adam Optimizer\n", | ||
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Initializing the variables\n", | ||
"init = tf.initialize_all_variables()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch: 0001 cost= 160.113980416\n", | ||
"Epoch: 0002 cost= 38.665780694\n", | ||
"Epoch: 0003 cost= 24.118004577\n", | ||
"Epoch: 0004 cost= 16.440921303\n", | ||
"Epoch: 0005 cost= 11.689460141\n", | ||
"Epoch: 0006 cost= 8.469423468\n", | ||
"Epoch: 0007 cost= 6.223237230\n", | ||
"Epoch: 0008 cost= 4.560174118\n", | ||
"Epoch: 0009 cost= 3.250516910\n", | ||
"Epoch: 0010 cost= 2.359658795\n", | ||
"Epoch: 0011 cost= 1.694081847\n", | ||
"Epoch: 0012 cost= 1.167997509\n", | ||
"Epoch: 0013 cost= 0.872986831\n", | ||
"Epoch: 0014 cost= 0.630616366\n", | ||
"Epoch: 0015 cost= 0.487381571\n", | ||
"Optimization Finished!\n", | ||
"Accuracy: 0.9462\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Launch the graph\n", | ||
"with tf.Session() as sess:\n", | ||
" sess.run(init)\n", | ||
"\n", | ||
" # Training cycle\n", | ||
" for epoch in range(training_epochs):\n", | ||
" avg_cost = 0.\n", | ||
" total_batch = int(mnist.train.num_examples/batch_size)\n", | ||
" # Loop over all batches\n", | ||
" for i in range(total_batch):\n", | ||
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n", | ||
" # Fit training using batch data\n", | ||
" sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})\n", | ||
" # Compute average loss\n", | ||
" avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch\n", | ||
" # Display logs per epoch step\n", | ||
" if epoch % display_step == 0:\n", | ||
" print \"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost)\n", | ||
"\n", | ||
" print \"Optimization Finished!\"\n", | ||
"\n", | ||
" # Test model\n", | ||
" correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n", | ||
" # Calculate accuracy\n", | ||
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n", | ||
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.4.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |