Skip to content

Commit b424fe0

Browse files
committed
Add TensorFlow multilayer perceptrons notebook.
1 parent 46bf758 commit b424fe0

File tree

2 files changed

+254
-0
lines changed

2 files changed

+254
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -100,6 +100,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
100100
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
101101
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
102102
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
103+
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
103104

104105
### tensor-flow-exercises
105106

Lines changed: 253 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,253 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Multilayer Perceptron in TensorFlow\n",
8+
"\n",
9+
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
10+
"\n",
11+
"## Setup\n",
12+
"\n",
13+
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
14+
]
15+
},
16+
{
17+
"cell_type": "code",
18+
"execution_count": 2,
19+
"metadata": {
20+
"collapsed": false
21+
},
22+
"outputs": [
23+
{
24+
"name": "stdout",
25+
"output_type": "stream",
26+
"text": [
27+
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
28+
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
29+
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
30+
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
31+
]
32+
}
33+
],
34+
"source": [
35+
"# Import MINST data\n",
36+
"import input_data\n",
37+
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
38+
]
39+
},
40+
{
41+
"cell_type": "code",
42+
"execution_count": 3,
43+
"metadata": {
44+
"collapsed": true
45+
},
46+
"outputs": [],
47+
"source": [
48+
"import tensorflow as tf"
49+
]
50+
},
51+
{
52+
"cell_type": "code",
53+
"execution_count": 4,
54+
"metadata": {
55+
"collapsed": true
56+
},
57+
"outputs": [],
58+
"source": [
59+
"# Parameters\n",
60+
"learning_rate = 0.001\n",
61+
"training_epochs = 15\n",
62+
"batch_size = 100\n",
63+
"display_step = 1"
64+
]
65+
},
66+
{
67+
"cell_type": "code",
68+
"execution_count": 5,
69+
"metadata": {
70+
"collapsed": true
71+
},
72+
"outputs": [],
73+
"source": [
74+
"# Network Parameters\n",
75+
"n_hidden_1 = 256 # 1st layer num features\n",
76+
"n_hidden_2 = 256 # 2nd layer num features\n",
77+
"n_input = 784 # MNIST data input (img shape: 28*28)\n",
78+
"n_classes = 10 # MNIST total classes (0-9 digits)"
79+
]
80+
},
81+
{
82+
"cell_type": "code",
83+
"execution_count": 6,
84+
"metadata": {
85+
"collapsed": true
86+
},
87+
"outputs": [],
88+
"source": [
89+
"# tf Graph input\n",
90+
"x = tf.placeholder(\"float\", [None, n_input])\n",
91+
"y = tf.placeholder(\"float\", [None, n_classes])"
92+
]
93+
},
94+
{
95+
"cell_type": "code",
96+
"execution_count": 7,
97+
"metadata": {
98+
"collapsed": true
99+
},
100+
"outputs": [],
101+
"source": [
102+
"# Create model\n",
103+
"def multilayer_perceptron(_X, _weights, _biases):\n",
104+
" #Hidden layer with RELU activation\n",
105+
" layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) \n",
106+
" #Hidden layer with RELU activation\n",
107+
" layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) \n",
108+
" return tf.matmul(layer_2, weights['out']) + biases['out']"
109+
]
110+
},
111+
{
112+
"cell_type": "code",
113+
"execution_count": 8,
114+
"metadata": {
115+
"collapsed": true
116+
},
117+
"outputs": [],
118+
"source": [
119+
"# Store layers weight & bias\n",
120+
"weights = {\n",
121+
" 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),\n",
122+
" 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),\n",
123+
" 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))\n",
124+
"}\n",
125+
"biases = {\n",
126+
" 'b1': tf.Variable(tf.random_normal([n_hidden_1])),\n",
127+
" 'b2': tf.Variable(tf.random_normal([n_hidden_2])),\n",
128+
" 'out': tf.Variable(tf.random_normal([n_classes]))\n",
129+
"}"
130+
]
131+
},
132+
{
133+
"cell_type": "code",
134+
"execution_count": 9,
135+
"metadata": {
136+
"collapsed": true
137+
},
138+
"outputs": [],
139+
"source": [
140+
"# Construct model\n",
141+
"pred = multilayer_perceptron(x, weights, biases)"
142+
]
143+
},
144+
{
145+
"cell_type": "code",
146+
"execution_count": 10,
147+
"metadata": {
148+
"collapsed": true
149+
},
150+
"outputs": [],
151+
"source": [
152+
"# Define loss and optimizer\n",
153+
"# Softmax loss\n",
154+
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) \n",
155+
"# Adam Optimizer\n",
156+
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) "
157+
]
158+
},
159+
{
160+
"cell_type": "code",
161+
"execution_count": 11,
162+
"metadata": {
163+
"collapsed": true
164+
},
165+
"outputs": [],
166+
"source": [
167+
"# Initializing the variables\n",
168+
"init = tf.initialize_all_variables()"
169+
]
170+
},
171+
{
172+
"cell_type": "code",
173+
"execution_count": 12,
174+
"metadata": {
175+
"collapsed": false
176+
},
177+
"outputs": [
178+
{
179+
"name": "stdout",
180+
"output_type": "stream",
181+
"text": [
182+
"Epoch: 0001 cost= 160.113980416\n",
183+
"Epoch: 0002 cost= 38.665780694\n",
184+
"Epoch: 0003 cost= 24.118004577\n",
185+
"Epoch: 0004 cost= 16.440921303\n",
186+
"Epoch: 0005 cost= 11.689460141\n",
187+
"Epoch: 0006 cost= 8.469423468\n",
188+
"Epoch: 0007 cost= 6.223237230\n",
189+
"Epoch: 0008 cost= 4.560174118\n",
190+
"Epoch: 0009 cost= 3.250516910\n",
191+
"Epoch: 0010 cost= 2.359658795\n",
192+
"Epoch: 0011 cost= 1.694081847\n",
193+
"Epoch: 0012 cost= 1.167997509\n",
194+
"Epoch: 0013 cost= 0.872986831\n",
195+
"Epoch: 0014 cost= 0.630616366\n",
196+
"Epoch: 0015 cost= 0.487381571\n",
197+
"Optimization Finished!\n",
198+
"Accuracy: 0.9462\n"
199+
]
200+
}
201+
],
202+
"source": [
203+
"# Launch the graph\n",
204+
"with tf.Session() as sess:\n",
205+
" sess.run(init)\n",
206+
"\n",
207+
" # Training cycle\n",
208+
" for epoch in range(training_epochs):\n",
209+
" avg_cost = 0.\n",
210+
" total_batch = int(mnist.train.num_examples/batch_size)\n",
211+
" # Loop over all batches\n",
212+
" for i in range(total_batch):\n",
213+
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
214+
" # Fit training using batch data\n",
215+
" sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})\n",
216+
" # Compute average loss\n",
217+
" avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch\n",
218+
" # Display logs per epoch step\n",
219+
" if epoch % display_step == 0:\n",
220+
" print \"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost)\n",
221+
"\n",
222+
" print \"Optimization Finished!\"\n",
223+
"\n",
224+
" # Test model\n",
225+
" correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
226+
" # Calculate accuracy\n",
227+
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
228+
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})"
229+
]
230+
}
231+
],
232+
"metadata": {
233+
"kernelspec": {
234+
"display_name": "Python 3",
235+
"language": "python",
236+
"name": "python3"
237+
},
238+
"language_info": {
239+
"codemirror_mode": {
240+
"name": "ipython",
241+
"version": 3
242+
},
243+
"file_extension": ".py",
244+
"mimetype": "text/x-python",
245+
"name": "python",
246+
"nbconvert_exporter": "python",
247+
"pygments_lexer": "ipython3",
248+
"version": "3.4.3"
249+
}
250+
},
251+
"nbformat": 4,
252+
"nbformat_minor": 0
253+
}

0 commit comments

Comments
 (0)