Skip to content

Commit 02f8509

Browse files
P-Shreyas-Shettypoyea
authored andcommitted
Implementation of Newton-Raphson method (TheAlgorithms#650)
Implemented Newton-Raphson method using pure python. Third party library is used only for visualizing error variation with each iteration.
1 parent a0d5c9a commit 02f8509

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed

maths/newton_raphson.py

+50
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
'''
2+
Author: P Shreyas Shetty
3+
Implementation of Newton-Raphson method for solving equations of kind
4+
f(x) = 0. It is an iterative method where solution is found by the expression
5+
x[n+1] = x[n] + f(x[n])/f'(x[n])
6+
If no solution exists, then either the solution will not be found when iteration
7+
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
8+
is raised. If iteration limit is reached, try increasing maxiter.
9+
'''
10+
11+
import math as m
12+
13+
def calc_derivative(f, a, h=0.001):
14+
'''
15+
Calculates derivative at point a for function f using finite difference
16+
method
17+
'''
18+
return (f(a+h)-f(a-h))/(2*h)
19+
20+
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False):
21+
22+
a = x0 #set the initial guess
23+
steps = [a]
24+
error = abs(f(a))
25+
f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x)
26+
for _ in range(maxiter):
27+
if f1(a) == 0:
28+
raise ValueError("No converging solution found")
29+
a = a - f(a)/f1(a) #Calculate the next estimate
30+
if logsteps:
31+
steps.append(a)
32+
error = abs(f(a))
33+
if error < maxerror:
34+
break
35+
else:
36+
raise ValueError("Itheration limit reached, no converging solution found")
37+
if logsteps:
38+
#If logstep is true, then log intermediate steps
39+
return a, error, steps
40+
return a, error
41+
42+
if __name__ == '__main__':
43+
import matplotlib.pyplot as plt
44+
f = lambda x:m.tanh(x)**2-m.exp(3*x)
45+
solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True)
46+
plt.plot([abs(f(x)) for x in steps])
47+
plt.xlabel("step")
48+
plt.ylabel("error")
49+
plt.show()
50+
print("solution = {%f}, error = {%f}" % (solution, error))

0 commit comments

Comments
 (0)