This simple library aims to collect entity-alignment benchmark datasets and make them easily available.
Load benchmark datasets:
>>> from sylloge import OpenEA
>>> ds = OpenEA()
>>> ds
OpenEA(backend=pandas, graph_pair=D_W, size=15K, version=V1, rel_triples_left=38265, rel_triples_right=42746, attr_triples_left=52134, attr_triples_right=138246, ent_links=15000, folds=5)
>>> ds.rel_triples_right.head()
head relation tail
0 http://www.wikidata.org/entity/Q6176218 http://www.wikidata.org/entity/P27 http://www.wikidata.org/entity/Q145
1 http://www.wikidata.org/entity/Q212675 http://www.wikidata.org/entity/P161 http://www.wikidata.org/entity/Q446064
2 http://www.wikidata.org/entity/Q13512243 http://www.wikidata.org/entity/P840 http://www.wikidata.org/entity/Q84
3 http://www.wikidata.org/entity/Q2268591 http://www.wikidata.org/entity/P31 http://www.wikidata.org/entity/Q11424
4 http://www.wikidata.org/entity/Q11300470 http://www.wikidata.org/entity/P178 http://www.wikidata.org/entity/Q170420
>>> ds.attr_triples_left.head()
head relation tail
0 http://dbpedia.org/resource/E534644 http://dbpedia.org/ontology/imdbId 0044475
1 http://dbpedia.org/resource/E340590 http://dbpedia.org/ontology/runtime 6480.0^^<http://www.w3.org/2001/XMLSchema#double>
2 http://dbpedia.org/resource/E840454 http://dbpedia.org/ontology/activeYearsStartYear 1948^^<http://www.w3.org/2001/XMLSchema#gYear>
3 http://dbpedia.org/resource/E971710 http://purl.org/dc/elements/1.1/description English singer-songwriter
4 http://dbpedia.org/resource/E022831 http://dbpedia.org/ontology/militaryCommand Commandant of the Marine Corps
The gold standard entity links are stored as [eche](https://github.com/dobraczka/eche) ClusterHelper, which provides convenient functionalities:
>>> ds.ent_links.clusters[0]
{'http://www.wikidata.org/entity/Q21197', 'http://dbpedia.org/resource/E123186'}
>>> ('http://www.wikidata.org/entity/Q21197', 'http://dbpedia.org/resource/E123186') in ds.ent_links
True
>>> ('http://dbpedia.org/resource/E123186', 'http://www.wikidata.org/entity/Q21197') in ds.ent_links
True
>>> ds.ent_links.links('http://www.wikidata.org/entity/Q21197')
'http://dbpedia.org/resource/E123186'
>>> ds.ent_links.all_pairs()
<itertools.chain object at 0x7f92c6287c10>
Most datasets are binary matching tasks, but for example the MovieGraphBenchmark
provides a multi-source setting:
>>> ds = MovieGraphBenchmark(graph_pair="multi")
>>> ds
MovieGraphBenchmark(backend=pandas,graph_pair=multi, rel_triples_0=17507, attr_triples_0=20800 rel_triples_1=27903, attr_triples_1=23761 rel_triples_2=15455, attr_triples_2=20902, ent_links=3598, folds=5)
>>> ds.dataset_names
('imdb', 'tmdb', 'tvdb')
Here the PrefixedClusterHelper
various convenience functions:
Get pairs between specific dataset pairs
>>> list(ds.ent_links.pairs_in_ds_tuple(("imdb","tmdb")))[0]
('https://www.scads.de/movieBenchmark/resource/IMDB/nm0641721', 'https://www.scads.de/movieBenchmark/resource/TMDB/person1236714')
Get number of intra-dataset pairs
>>> ds.ent_links.number_of_intra_links
(1, 64, 22663)
For all datasets you can get a canonical name for a dataset instance to use e.g. to create folders to store experiment results:
>>> ds.canonical_name
'openea_d_w_15k_v1'
You can use dask as backend for larger datasets:
>>> ds = OpenEA(backend="dask")
>>> ds
OpenEA(backend=dask, graph_pair=D_W, size=15K, version=V1, rel_triples_left=38265, rel_triples_right=42746, attr_triples_left=52134, attr_triples_right=138246, ent_links=15000, folds=5)
Which replaces pandas DataFrames with dask DataFrames.
Datasets can be written/read as parquet via to_parquet
or read_parquet
.
After the initial read datasets are cached using this format. The cache_path
can be explicitly set and caching behaviour can be disable via use_cache=False
, when initalizing a dataset.
Some datasets come with pre-determined splits:
tree ~/.data/sylloge/open_ea/cached/D_W_15K_V1
βββ attr_triples_left_parquet
βββ attr_triples_right_parquet
βββ dataset_names.txt
βββ ent_links_parquet
βββ folds
βΒ Β βββ 1
βΒ Β βΒ Β βββ test_parquet
βΒ Β βΒ Β βββ train_parquet
βΒ Β βΒ Β βββ val_parquet
βΒ Β βββ 2
βΒ Β βΒ Β βββ test_parquet
βΒ Β βΒ Β βββ train_parquet
βΒ Β βΒ Β βββ val_parquet
βΒ Β βββ 3
βΒ Β βΒ Β βββ test_parquet
βΒ Β βΒ Β βββ train_parquet
βΒ Β βΒ Β βββ val_parquet
βΒ Β βββ 4
βΒ Β βΒ Β βββ test_parquet
βΒ Β βΒ Β βββ train_parquet
βΒ Β βΒ Β βββ val_parquet
βΒ Β βββ 5
βΒ Β βββ test_parquet
βΒ Β βββ train_parquet
βΒ Β βββ val_parquet
βββ rel_triples_left_parquet
βββ rel_triples_right_parquet
some don't:
tree ~/.data/sylloge/oaei/cached/starwars_swg
βββ attr_triples_left_parquet
βΒ Β βββ part.0.parquet
βββ attr_triples_right_parquet
βΒ Β βββ part.0.parquet
βββ dataset_names.txt
βββ ent_links_parquet
βΒ Β βββ part.0.parquet
βββ rel_triples_left_parquet
βΒ Β βββ part.0.parquet
βββ rel_triples_right_parquet
βββ part.0.parquet
pip install sylloge
Dataset family name | Year | # of Datasets | Sources | References |
---|---|---|---|---|
OpenEA | 2020 | 16 | DBpedia, Yago, Wikidata | Paper, Repo |
MED-BBK | 2020 | 1 | Baidu Baike | Paper, Repo |
MovieGraphBenchmark | 2022 | 3 | IMDB, TMDB, TheTVDB | Paper, Repo |
OAEI | 2022 | 5 | Fandom wikis | Paper, Website |
More broad statistics are provided in dataset_statistics.csv
. You can also get a pandas DataFrame with statistics for specific datasets for example to create tables for publications:
>>> ds = MovieGraphBenchmark(graph_pair="multi")
>>> from sylloge.create_statistic import create_statistics_df
>>> stats_df = create_statistics_df([ds])
>>> stats_df.loc[("MovieGraphBenchmark","moviegraphbenchmark_multi","imdb")]
Entities Relation Triples Attribute Triples ... Clusters Intra-dataset Matches All Matches
Dataset family Task Name Dataset Name ...
MovieGraphBenchmark moviegraphbenchmark_multi imdb 5129 17507 20800 ... 3598 1 31230
[1 rows x 9 columns]