-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
197 lines (168 loc) · 7.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import os
import math
from functools import partial
import matplotlib.pyplot as plt
import yaml
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch.nn.functional as F
import datasets
import models
import utils
def batched_predict(model, inp, coord, cell, wave_inp, wave_inp_l, wave_cell, bsize):
with torch.no_grad():
model.gen_feat(inp, wave_inp, wave_inp_l)
#coord = coord.reshape(bs, -1, 2)
n = coord.shape[1]
ql = 0
preds = []
while ql < n:
qr = min(ql + bsize, n)
#pred = model.query_rgb(coord[:, ql: qr, :], wave_coord, cell[:, ql: qr, :], wave_cell[:, ql: qr, :])
pred = model.query_rgb(coord[:, ql: qr, :], cell, wave_cell)
preds.append(pred)
ql = qr
pred = torch.cat(preds, dim=1)
return pred
def eval_psnr(loader, model, data_norm=None, eval_type=None, eval_bsize=None, window_size=0, scale_max=4, fast=False,
verbose=False):
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
if eval_type is None:
metric_fn = utils.calc_psnr
elif eval_type.startswith('div2k'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
elif eval_type.startswith('benchmark'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
else:
raise NotImplementedError
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
for batch in pbar:
for k, v in batch.items():
if v is not None:
batch[k] = v.cuda()
bs = batch['inp'].shape[0]
inp = (batch['inp'] - inp_sub) / inp_div
#wave_inp = (batch['wave_lr'] - inp_sub) / inp_div
#wave_inp_l = (batch['wave_lr_l'] - inp_sub) / inp_div
# SwinIR Evaluation - reflection padding
if window_size != 0:
_, _, h_old, w_old = inp.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
inp = torch.cat([inp, torch.flip(inp, [2])], 2)[:, :, :h_old + h_pad, :]
inp = torch.cat([inp, torch.flip(inp, [3])], 3)[:, :, :, :w_old + w_pad]
coord = utils.make_coord((scale*(h_old+h_pad), scale*(w_old+w_pad))).unsqueeze(0).cuda()
cell = torch.ones_like(coord)
cell[:, :, 0] *= 2 / inp.shape[-2] / scale
cell[:, :, 1] *= 2 / inp.shape[-1] / scale
else:
h_pad = 0
w_pad = 0
coord = batch['sample_coord']
cell = batch['cell']
if eval_bsize is None:
with torch.no_grad():
pred = model(inp, coord, cell)
else:
if fast:
pred = model(inp, coord, cell*max(scale/scale_max, 1))
else:
coords = batch['coords']
bs = coords.shape[0]
coords = coords.reshape(bs, -1, 2)
with torch.no_grad():
pred = batched_predict(model, inp, coords, cell*max(scale/scale_max, 1), eval_bsize) # cell clip for extrapolation
pred = pred * gt_div + gt_sub
pred.clamp_(0, 1)
if eval_type is not None and fast == False: # reshape for shaving-eval
# gt reshape
ih, iw = batch['inp'].shape[-2:]
s = math.sqrt(coords.shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
#batch['gt'] = batch['gt'].view(*shape) \
# .permute(0, 3, 1, 2).contiguous()
# prediction reshape
ih += h_pad
iw += w_pad
s = math.sqrt(coords.shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
pred = pred.view(*shape) \
.permute(0, 3, 1, 2).contiguous()
pred = pred[..., :batch['gt'].shape[-2], :batch['gt'].shape[-1]]
#plt.imshow(pred[0].cpu().permute(1,2,0),cmap="gray")
#plt.show()
sample_coord = batch['sample_coord']
sample_coord = sample_coord.unsqueeze(2)
gt = F.grid_sample(batch['gt'], sample_coord.flip(-1), \
mode='nearest', align_corners=False).permute(0, 2, 3, 1)
gt = gt.reshape(bs, -1, 3)
#pred = pred.reshape(bs, -1, 3)
#gt = batch['gt'].reshape(bs, -1, 3)
res = metric_fn(pred, gt)
val_res.add(res.item(), inp.shape[0])
'''
if eval_type is not None and fast == False: # reshape for shaving-eval
# gt reshape
ih, iw = batch['wave_lr'].shape[-2:]
s = math.sqrt(batch['wave_coord'].shape[1] / (ih * iw))
shape = [batch['wave_lr'].shape[0], round(ih * s), round(iw * s), 3]
batch['wave_gt'] = batch['wave_gt'].view(*shape) \
.permute(0, 3, 1, 2).contiguous()
# prediction reshape
ih += h_pad
iw += w_pad
s = math.sqrt(coord.shape[1] / (ih * iw))
shape = [batch['wave_lr'].shape[0], round(ih * s), round(iw * s), 3]
pred = pred.view(*shape) \
.permute(0, 3, 1, 2).contiguous()
pred = pred[..., :batch['wave_gt'].shape[-2], :batch['wave_gt'].shape[-1]]
res = metric_fn(pred, batch['wave_gt'])
val_res.add(res.item(), wave_inp.shape[0])
'''
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='/ssd/data/miccai01/xiaoduan/lter10/configs/test/test-div2k-2.yaml')
parser.add_argument('--model', default='/ssd/data/miccai01/xiaoduan/lter10/save/train_edsr_baseline/epoch-last.pth')
parser.add_argument('--window', default='0')
parser.add_argument('--scale_max', default='4')
parser.add_argument('--fast', default=False)
parser.add_argument('--gpu', default='3')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
spec = config['test_dataset']
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
loader = DataLoader(dataset, batch_size=spec['batch_size'],
num_workers=8, pin_memory=True, collate_fn=dataset.collate_fn)
model_spec = torch.load(args.model)['model']
model = models.make(model_spec, load_sd=True).cuda()
res = eval_psnr(loader, model,
data_norm=config.get('data_norm'),
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'),
window_size=int(args.window),
scale_max = int(args.scale_max),
fast = args.fast,
verbose=True)
print('result: {:.4f}'.format(res))