@@ -19,7 +19,7 @@ knitr::opts_chunk$set(
19
19
20
20
[ ![ R build status] ( https://github.com/dm13450/dirichletprocess/workflows/R-CMD-check/badge.svg )] ( https://github.com/dm13450/dirichletprocess/actions )
21
21
[ ![ AppVeyor Build Status] ( https://ci.appveyor.com/api/projects/status/github/dm13450/dirichletprocess?branch=master&svg=true )] ( https://ci.appveyor.com/project/dm13450/dirichletprocess )
22
- [ ![ Coverage Status] ( https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg )] ( https://codecov.io/gh/dm13450/dirichletprocess )
22
+ [ ![ Coverage Status] ( https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg )] ( https://app. codecov.io/gh/dm13450/dirichletprocess )
23
23
24
24
25
25
The dirichletprocess package provides tools for you to build custom Dirichlet process mixture models. You can use the pre-built Normal/Weibull/Beta distributions or create your own following the instructions in the vignette. In as little as four lines of code you can be modelling your data nonparametrically.
@@ -81,16 +81,16 @@ For more detailed explanations and examples see the vignette.
81
81
82
82
I've written a number of tutorials:
83
83
84
- * [ Non parametric priors] ( http ://dm13450.github.io/2019/02/22/Nonparametric-Prior.html)
85
- * [ Calculating cluster probabilities] ( http ://dm13450.github.io/2018/11/21/Cluster-Probabilities.html)
86
- * [ Clustering] ( http ://dm13450.github.io/2018/05/30/Clustering.html)
87
- * [ Point processes] ( http ://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html)
88
- * [ Custom mixtures] ( http ://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html)
89
- * [ Density estimation] ( http ://dm13450.github.io/2018/02/01/Dirichlet-Density.html)
90
- * [ Checking convergence] ( http ://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html)
84
+ * [ Non parametric priors] ( https ://dm13450.github.io/2019/02/22/Nonparametric-Prior.html)
85
+ * [ Calculating cluster probabilities] ( https ://dm13450.github.io/2018/11/21/Cluster-Probabilities.html)
86
+ * [ Clustering] ( https ://dm13450.github.io/2018/05/30/Clustering.html)
87
+ * [ Point processes] ( https ://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html)
88
+ * [ Custom mixtures] ( https ://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html)
89
+ * [ Density estimation] ( https ://dm13450.github.io/2018/02/01/Dirichlet-Density.html)
90
+ * [ Checking convergence] ( https ://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html)
91
91
92
92
and some case studies:
93
93
94
- * [ State of the Market - Infinite State Hidden Markov Models] ( http ://dm13450.github.io/2020/06/03/State-of-the-Market.html)
95
- * [ Palmer Penguins and an Introduction to Dirichlet Processes] ( http ://dm13450.github.io/2020/09/28/PriorToPosterior.html)
94
+ * [ State of the Market - Infinite State Hidden Markov Models] ( https ://dm13450.github.io/2020/06/03/State-of-the-Market.html)
95
+ * [ Palmer Penguins and an Introduction to Dirichlet Processes] ( https ://dm13450.github.io/2020/09/28/PriorToPosterior.html)
96
96
0 commit comments