Skip to content

Commit 879fba7

Browse files
Solutions for part 3
1 parent fae8ebb commit 879fba7

19 files changed

+3328
-131
lines changed

lessons/Part3/10_libraries.ipynb

Lines changed: 250 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -68,9 +68,18 @@
6868
},
6969
{
7070
"cell_type": "code",
71-
"execution_count": null,
71+
"execution_count": 1,
7272
"metadata": {},
73-
"outputs": [],
73+
"outputs": [
74+
{
75+
"name": "stdout",
76+
"output_type": "stream",
77+
"text": [
78+
"pi is 3.141592653589793\n",
79+
"cos(pi) is -1.0\n"
80+
]
81+
}
82+
],
7483
"source": [
7584
"import math\n",
7685
"\n",
@@ -89,9 +98,232 @@
8998
},
9099
{
91100
"cell_type": "code",
92-
"execution_count": null,
101+
"execution_count": 2,
93102
"metadata": {},
94-
"outputs": [],
103+
"outputs": [
104+
{
105+
"name": "stdout",
106+
"output_type": "stream",
107+
"text": [
108+
"Help on module math:\n",
109+
"\n",
110+
"NAME\n",
111+
" math\n",
112+
"\n",
113+
"MODULE REFERENCE\n",
114+
" https://docs.python.org/3.7/library/math\n",
115+
" \n",
116+
" The following documentation is automatically generated from the Python\n",
117+
" source files. It may be incomplete, incorrect or include features that\n",
118+
" are considered implementation detail and may vary between Python\n",
119+
" implementations. When in doubt, consult the module reference at the\n",
120+
" location listed above.\n",
121+
"\n",
122+
"DESCRIPTION\n",
123+
" This module provides access to the mathematical functions\n",
124+
" defined by the C standard.\n",
125+
"\n",
126+
"FUNCTIONS\n",
127+
" acos(x, /)\n",
128+
" Return the arc cosine (measured in radians) of x.\n",
129+
" \n",
130+
" acosh(x, /)\n",
131+
" Return the inverse hyperbolic cosine of x.\n",
132+
" \n",
133+
" asin(x, /)\n",
134+
" Return the arc sine (measured in radians) of x.\n",
135+
" \n",
136+
" asinh(x, /)\n",
137+
" Return the inverse hyperbolic sine of x.\n",
138+
" \n",
139+
" atan(x, /)\n",
140+
" Return the arc tangent (measured in radians) of x.\n",
141+
" \n",
142+
" atan2(y, x, /)\n",
143+
" Return the arc tangent (measured in radians) of y/x.\n",
144+
" \n",
145+
" Unlike atan(y/x), the signs of both x and y are considered.\n",
146+
" \n",
147+
" atanh(x, /)\n",
148+
" Return the inverse hyperbolic tangent of x.\n",
149+
" \n",
150+
" ceil(x, /)\n",
151+
" Return the ceiling of x as an Integral.\n",
152+
" \n",
153+
" This is the smallest integer >= x.\n",
154+
" \n",
155+
" copysign(x, y, /)\n",
156+
" Return a float with the magnitude (absolute value) of x but the sign of y.\n",
157+
" \n",
158+
" On platforms that support signed zeros, copysign(1.0, -0.0)\n",
159+
" returns -1.0.\n",
160+
" \n",
161+
" cos(x, /)\n",
162+
" Return the cosine of x (measured in radians).\n",
163+
" \n",
164+
" cosh(x, /)\n",
165+
" Return the hyperbolic cosine of x.\n",
166+
" \n",
167+
" degrees(x, /)\n",
168+
" Convert angle x from radians to degrees.\n",
169+
" \n",
170+
" erf(x, /)\n",
171+
" Error function at x.\n",
172+
" \n",
173+
" erfc(x, /)\n",
174+
" Complementary error function at x.\n",
175+
" \n",
176+
" exp(x, /)\n",
177+
" Return e raised to the power of x.\n",
178+
" \n",
179+
" expm1(x, /)\n",
180+
" Return exp(x)-1.\n",
181+
" \n",
182+
" This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.\n",
183+
" \n",
184+
" fabs(x, /)\n",
185+
" Return the absolute value of the float x.\n",
186+
" \n",
187+
" factorial(x, /)\n",
188+
" Find x!.\n",
189+
" \n",
190+
" Raise a ValueError if x is negative or non-integral.\n",
191+
" \n",
192+
" floor(x, /)\n",
193+
" Return the floor of x as an Integral.\n",
194+
" \n",
195+
" This is the largest integer <= x.\n",
196+
" \n",
197+
" fmod(x, y, /)\n",
198+
" Return fmod(x, y), according to platform C.\n",
199+
" \n",
200+
" x % y may differ.\n",
201+
" \n",
202+
" frexp(x, /)\n",
203+
" Return the mantissa and exponent of x, as pair (m, e).\n",
204+
" \n",
205+
" m is a float and e is an int, such that x = m * 2.**e.\n",
206+
" If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.\n",
207+
" \n",
208+
" fsum(seq, /)\n",
209+
" Return an accurate floating point sum of values in the iterable seq.\n",
210+
" \n",
211+
" Assumes IEEE-754 floating point arithmetic.\n",
212+
" \n",
213+
" gamma(x, /)\n",
214+
" Gamma function at x.\n",
215+
" \n",
216+
" gcd(x, y, /)\n",
217+
" greatest common divisor of x and y\n",
218+
" \n",
219+
" hypot(x, y, /)\n",
220+
" Return the Euclidean distance, sqrt(x*x + y*y).\n",
221+
" \n",
222+
" isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)\n",
223+
" Determine whether two floating point numbers are close in value.\n",
224+
" \n",
225+
" rel_tol\n",
226+
" maximum difference for being considered \"close\", relative to the\n",
227+
" magnitude of the input values\n",
228+
" abs_tol\n",
229+
" maximum difference for being considered \"close\", regardless of the\n",
230+
" magnitude of the input values\n",
231+
" \n",
232+
" Return True if a is close in value to b, and False otherwise.\n",
233+
" \n",
234+
" For the values to be considered close, the difference between them\n",
235+
" must be smaller than at least one of the tolerances.\n",
236+
" \n",
237+
" -inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n",
238+
" is, NaN is not close to anything, even itself. inf and -inf are\n",
239+
" only close to themselves.\n",
240+
" \n",
241+
" isfinite(x, /)\n",
242+
" Return True if x is neither an infinity nor a NaN, and False otherwise.\n",
243+
" \n",
244+
" isinf(x, /)\n",
245+
" Return True if x is a positive or negative infinity, and False otherwise.\n",
246+
" \n",
247+
" isnan(x, /)\n",
248+
" Return True if x is a NaN (not a number), and False otherwise.\n",
249+
" \n",
250+
" ldexp(x, i, /)\n",
251+
" Return x * (2**i).\n",
252+
" \n",
253+
" This is essentially the inverse of frexp().\n",
254+
" \n",
255+
" lgamma(x, /)\n",
256+
" Natural logarithm of absolute value of Gamma function at x.\n",
257+
" \n",
258+
" log(...)\n",
259+
" log(x, [base=math.e])\n",
260+
" Return the logarithm of x to the given base.\n",
261+
" \n",
262+
" If the base not specified, returns the natural logarithm (base e) of x.\n",
263+
" \n",
264+
" log10(x, /)\n",
265+
" Return the base 10 logarithm of x.\n",
266+
" \n",
267+
" log1p(x, /)\n",
268+
" Return the natural logarithm of 1+x (base e).\n",
269+
" \n",
270+
" The result is computed in a way which is accurate for x near zero.\n",
271+
" \n",
272+
" log2(x, /)\n",
273+
" Return the base 2 logarithm of x.\n",
274+
" \n",
275+
" modf(x, /)\n",
276+
" Return the fractional and integer parts of x.\n",
277+
" \n",
278+
" Both results carry the sign of x and are floats.\n",
279+
" \n",
280+
" pow(x, y, /)\n",
281+
" Return x**y (x to the power of y).\n",
282+
" \n",
283+
" radians(x, /)\n",
284+
" Convert angle x from degrees to radians.\n",
285+
" \n",
286+
" remainder(x, y, /)\n",
287+
" Difference between x and the closest integer multiple of y.\n",
288+
" \n",
289+
" Return x - n*y where n*y is the closest integer multiple of y.\n",
290+
" In the case where x is exactly halfway between two multiples of\n",
291+
" y, the nearest even value of n is used. The result is always exact.\n",
292+
" \n",
293+
" sin(x, /)\n",
294+
" Return the sine of x (measured in radians).\n",
295+
" \n",
296+
" sinh(x, /)\n",
297+
" Return the hyperbolic sine of x.\n",
298+
" \n",
299+
" sqrt(x, /)\n",
300+
" Return the square root of x.\n",
301+
" \n",
302+
" tan(x, /)\n",
303+
" Return the tangent of x (measured in radians).\n",
304+
" \n",
305+
" tanh(x, /)\n",
306+
" Return the hyperbolic tangent of x.\n",
307+
" \n",
308+
" trunc(x, /)\n",
309+
" Truncates the Real x to the nearest Integral toward 0.\n",
310+
" \n",
311+
" Uses the __trunc__ magic method.\n",
312+
"\n",
313+
"DATA\n",
314+
" e = 2.718281828459045\n",
315+
" inf = inf\n",
316+
" nan = nan\n",
317+
" pi = 3.141592653589793\n",
318+
" tau = 6.283185307179586\n",
319+
"\n",
320+
"FILE\n",
321+
" /Users/emilygrabowski/opt/anaconda3/lib/python3.7/lib-dynload/math.cpython-37m-darwin.so\n",
322+
"\n",
323+
"\n"
324+
]
325+
}
326+
],
95327
"source": [
96328
"help(math)"
97329
]
@@ -132,9 +364,17 @@
132364
},
133365
{
134366
"cell_type": "code",
135-
"execution_count": null,
367+
"execution_count": 3,
136368
"metadata": {},
137-
"outputs": [],
369+
"outputs": [
370+
{
371+
"name": "stdout",
372+
"output_type": "stream",
373+
"text": [
374+
"3.141592653589793\n"
375+
]
376+
}
377+
],
138378
"source": [
139379
"from math import *\n",
140380
"print(pi)"
@@ -202,6 +442,7 @@
202442
"* `pandas` -> `pd`\n",
203443
"* `numpy` -> `np`\n",
204444
"* `matplotlib` -> `mpl`.\n",
445+
"* `statsmodels.api` -> `sm`\n",
205446
"\n",
206447
"But sometimes aliases can make programs harder to understand, since readers must learn your program's aliases. Be very intentional about using aliases!"
207448
]
@@ -221,7 +462,7 @@
221462
},
222463
{
223464
"cell_type": "code",
224-
"execution_count": null,
465+
"execution_count": 4,
225466
"metadata": {},
226467
"outputs": [],
227468
"source": [
@@ -240,7 +481,7 @@
240481
],
241482
"metadata": {
242483
"kernelspec": {
243-
"display_name": "Python 3 (ipykernel)",
484+
"display_name": "Python 3",
244485
"language": "python",
245486
"name": "python3"
246487
},
@@ -254,7 +495,7 @@
254495
"name": "python",
255496
"nbconvert_exporter": "python",
256497
"pygments_lexer": "ipython3",
257-
"version": "3.8.12"
498+
"version": "3.7.6"
258499
},
259500
"toc": {
260501
"base_numbering": 1,

0 commit comments

Comments
 (0)