forked from aleju/mario-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.lua
264 lines (227 loc) · 7.61 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
-- Various utility functions involving game speed, extracting information from
-- the emulator's memory, screen capturing, image processing, save state handling
-- and plotting.
local util = {}
-- Returns whether the game is paused.
-- TODO is this still used?
function util.isGamePaused()
return gui.get_runmode() == "pause"
end
-- Sets the game speed to very fast (400).
function util.setGameSpeedToVeryFast()
settings.set_speed(400)
end
-- Sets the game speed to fast (200).
-- TODO is this still used?
function util.setGameSpeedToFast()
settings.set_speed(200)
end
-- Sets the game speed to normal (1).
-- TODO is this still used?
function util.setGameSpeedToNormal()
settings.set_speed(1)
end
-- Returns a random entry from an array.
-- TODO is this still used?
function util.getRandomEntry(arr)
return arr[math.random(#arr)]
end
-- Returns the current ingame score.
function util.getCurrentScore()
local score = lsne_memory.readsword("WRAM", 0x0f34) * 10
return score
end
-- Returns the current level?
-- TODO is this still used?
function util.getLevel()
local level = lsne_memory.readsword("WRAM", 0x13bf)
return level
end
-- Returns Mario's current x-coordinate.
function util.getPlayerX()
local x = lsne_memory.readsword("WRAM", 0x0094)
return x
end
-- Returns the current game status.
-- 0 = level
-- 1 = black screen?
-- 2 = overworld
function util.getMarioGameStatus()
local status = lsne_memory.readsword("WRAM", 0x0D9B)
return status
end
-- Returns whether the level is beaten.
-- TODO is this still used?
-- TODO does this work?
function util.isLevelBeaten()
return util.getLevelBeatenStatus() == 1
end
-- Returns whether the game is over.
-- TODO is this still used?
function util.isGameOver()
return util.getLevelBeatenStatus() == 128
end
-- Returns the level beaten status.
-- 0 = not beaten
-- 1 = beaten ?
-- 128 = game over
function util.getLevelBeatenStatus()
local value = lsne_memory.readsword("WRAM", 0x0DD5)
return value
end
-- Returns Mario's count of lifes.
-- Seems to not be fully reliable.
function util.getCountLifes()
local value = lsne_memory.readsword("WRAM", 0x0DBE)
-- value in memory is lifes-1
-- for some reason the value is sometimes way to high (260), but still
-- seems to decrease correctly by 1 when a life is lost
return value + 1
end
-- Returns Mario's current sprite.
-- 62 = Mario death animation sprite.
function util.getMarioImage()
local value = lsne_memory.readsword("WRAM", 0x13E0)
return value
end
-- Returns whether the level is currently ending (flat pole animation).
function util.isLevelEnding()
local value = lsne_memory.readsword("WRAM", 0x1493)
return (value > 0 and value <= 255)
end
-- Picks a random saved state and loads it (testing states only).
function util.loadRandomTrainingSaveState()
local stateNames = {}
for fname in paths.iterfiles("states/train/") do
if string.match(fname, "^.*\.lsmv$") then
table.insert(stateNames, fname)
end
end
if #stateNames == 0 then
error("No training states found in 'states/train/' directory.")
end
local stateName = stateNames[math.random(#stateNames)]
print("Reloading state ", stateName)
local state = movie.to_rewind("states/train/" .. stateName)
movie.unsafe_rewind(state)
end
-- Picks a random saved state and loads it (testing states only).
function util.loadRandomTestSaveState()
local stateNames = {}
for fname in paths.iterfiles("states/test/") do
if string.match(fname, "^.*\.lsmv$") then
table.insert(stateNames, fname)
end
end
if #stateNames == 0 then
error("No test states found in 'states/test/' directory.")
end
local stateName = stateNames[math.random(#stateNames)]
print("Reloading state ", stateName)
local state = movie.to_rewind("states/test/" .. stateName)
movie.unsafe_rewind(state)
end
-- convert rgb to grayscale by averaging channel intensities
-- https://gist.github.com/jkrish/29ca7302e98554dd0fcb
function util.rgb2y(im, threeChannels)
-- Image.rgb2y uses a different weight mixture
local dim, w, h = im:size()[1], im:size()[2], im:size()[3]
if dim ~= 3 then
print('<error> expected 3 channels')
return im
end
-- a cool application of tensor:select
local r = im:select(1, 1)
local g = im:select(1, 2)
local b = im:select(1, 3)
local z = torch.Tensor(1, w, h):zero()
-- z = z + 0.21r
z = z:add(0.21, r)
z = z:add(0.72, g)
z = z:add(0.07, b)
if threeChannels == true then
z = torch.repeatTensor(z, 3, 1, 1)
end
return z
end
-- Resize an image to given dimensions, including RGB to grayscale conversion.
-- TODO currently does not handle grayscale2rgb.
function util.toImageDimensions(img, dimensions)
local c, h, w = img:size(1), img:size(2), img:size(3)
if dimensions[1] == 1 and c ~= dimensions[1] then
img = util.rgb2y(img)
end
if h ~= dimensions[2] or w ~= dimensions[3] then
img = image.scale(img, dimensions[2], dimensions[3])
end
return img
end
-- Take a screenshot of the game and return it as a tensor.
-- TODO no longer used?
function util.getScreen()
local fp = SCREENSHOT_FILEPATH
gui.screenshot(fp)
local screen = image.load(fp, 3, "float"):clone()
screen = image.scale(screen, IMG_DIMENSIONS[2], IMG_DIMENSIONS[3]):clone()
if IMG_DIMENSIONS[1] == 1 then
screen = util.rgb2y(screen)
end
return screen
end
-- Take a screenshot of the game and return it jpg-compressed as a tensor.
function util.getScreenCompressed()
local fp = SCREENSHOT_FILEPATH
gui.screenshot(fp)
return util.loadJPGCompressed(fp, IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3])
end
-- Load a JPG image from a file, but keep it compressed.
function util.loadJPGCompressed(fp, channels, height, width)
-- from https://github.com/torch/image/blob/master/doc/saveload.md
local im = image.load(fp, 3, "float")
local c, h, w = im:size(1), im:size(2), im:size(3)
im = im[{{1,c}, {30,h}, {1,w}}] -- cut off 30px from the top
if c ~= channels then
im = util.rgb2y(im)
end
im = image.scale(im, height, width)
local img_binary = util.compressJPG(im)
return img_binary
end
-- Compress an uncompressed image tensor to a jpg-compressed image tensor.
function util.compressJPG(im)
return image.compressJPG(im, 100)
end
-- Decompress a jpg-compressed image tensor.
function util.decompressJPG(img_binary)
return image.decompressJPG(img_binary)
end
-- Save the global STATS-table to a file.
function util.saveStats()
local fp = "learned/stats.th7"
torch.save(fp, STATS)
end
-- Load the global STATS-table from a file.
function util.loadStats()
local fp = "learned/stats.th7"
if paths.filep(fp) then
STATS = torch.load(fp)
end
end
-- Sleep for N seconds.
function util.sleep(seconds)
os.execute("sleep " .. tonumber(seconds))
end
-- plot average recieved rewards (per N actions)
function util.plotAverageReward(rewardData, clampTo)
clampTo = clampTo or 10
local points = {}
for i=1,#rewardData do
local point = rewardData[i]
local direct = math.max(math.min(point[2], clampTo), (-1) * clampTo)
local observedGamma = math.max(math.min(point[3], clampTo), (-1) * clampTo)
local expectedGamma = math.max(math.min(point[4], clampTo), (-1) * clampTo)
table.insert(points, {point[1], direct, observedGamma, expectedGamma})
end
display.plot(points, {win=3, labels={'action counter', 'direct', 'observed gamma', 'expected gamma'}, title='Average rewards per N actions'})
end
return util