-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbest_cleaned.py
144 lines (120 loc) · 4.15 KB
/
best_cleaned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
import numpy as np
import umap
import faiss
import scanpy as sc
import argparse
import warnings
from sklearn.ensemble import RandomForestClassifier
from sklearn.cluster import KMeans
from scipy.sparse import issparse
warnings.simplefilter(action='ignore', category=FutureWarning)
def to_dense(X):
return X.toarray() if issparse(X) else X
def preprocess(
adata,
filter_hvg=True,
n_top_genes=2000,
do_scale=True,
do_pca=True,
n_pcs=30
):
adata.var_names = [v.split('_')[-1] for v in adata.var_names]
adata.var_names_make_unique()
sc.pp.filter_genes(adata, min_cells=3)
if filter_hvg:
sc.pp.highly_variable_genes(
adata,
flavor='cell_ranger',
n_top_genes=n_top_genes
)
adata = adata[:, adata.var['highly_variable']].copy()
#library size normalization 10,000 , log transform, and scaling
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
if do_scale:
sc.pp.scale(adata, max_value=10)
if do_pca:
sc.tl.pca(adata, svd_solver='arpack', n_comps=n_pcs)
return adata
def get_embedding(
adata,
use_pca=True,
umap_dim=10,
n_neighbors=15,
min_dist=0.4,
random_state=42
):
if use_pca:
X_for_umap = adata.obsm['X_pca'][:, :min(umap_dim*2, adata.obsm['X_pca'].shape[1])]
else:
X_for_umap = to_dense(adata.X)
reducer = umap.UMAP(
n_components=umap_dim,
n_neighbors=n_neighbors,
min_dist=min_dist,
random_state=random_state
)
emb = reducer.fit_transform(X_for_umap)
return emb
def unsupervised(data_file, k, out_file):
adata = sc.read(data_file)
adata = preprocess(adata, filter_hvg=True, n_top_genes=2000, do_scale=True, do_pca=True, n_pcs=30)
embedding = get_embedding(
adata,
use_pca=True,
umap_dim=10,
n_neighbors=15,
min_dist=0.4
).astype(np.float32)
kmeans = KMeans(n_clusters=k, random_state=42, max_iter=300)
clusters = kmeans.fit_predict(embedding)
np.save(out_file, clusters.astype(np.int64), allow_pickle=False)
def supervised(train_file, test_file, out_file):
train = sc.read(train_file)
test = sc.read(test_file)
train.var_names = [v.split('_')[-1] for v in train.var_names]
train.var_names_make_unique()
test.var_names = [v.split('_')[-1] for v in test.var_names]
test.var_names_make_unique()
common_genes = np.intersect1d(train.var_names, test.var_names)
train = train[:, common_genes].copy()
test = test[:, common_genes].copy()
combined = train.concatenate(test, join='outer', batch_categories=['train','test'])
combined = preprocess(combined, filter_hvg=True, n_top_genes=2000, do_scale=True, do_pca=True, n_pcs=30)
combined_emb = get_embedding(
combined,
use_pca=True,
umap_dim=10,
n_neighbors=15,
min_dist=0.4
)
n_train = train.shape[0]
train_emb = combined_emb[:n_train]
test_emb = combined_emb[n_train:]
rf = RandomForestClassifier(
n_estimators=200,
max_depth=None,
min_samples_leaf=1,
random_state=42,
n_jobs=-1
)
rf.fit(train_emb, train.obs['cell_ontology_class'].values)
preds = rf.predict(test_emb)
preds = preds.astype(np.str_)
np.save(out_file, preds, allow_pickle=False)
def main():
parser = argparse.ArgumentParser(description='Improved single-cell clustering/labeling pipeline using HVG, PCA, and UMAP.')
parser.add_argument('-d','--data',help='Input anndata file (or test file for supervised)',required=True)
parser.add_argument('-k',type=int,help='Number of clusters (for unsupervised clustering)')
parser.add_argument('-t','--train_data',help='Training anndata file (for supervised labeling)')
parser.add_argument('-o','--output_file',help='Output file (npy)',required=True)
args = parser.parse_args()
if args.train_data:
# Supervised
supervised(args.train_data, args.data, args.output_file)
else:
# Unsupervised
unsupervised(args.data, args.k, args.output_file)
if __name__ == '__main__':
main()