forked from wbpowell328/stochastic-optimization
-
Notifications
You must be signed in to change notification settings - Fork 19
/
BloodManagementDriverScript.py
953 lines (681 loc) · 45.4 KB
/
BloodManagementDriverScript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pickle
import time
import cvxopt
from collections import (namedtuple, defaultdict)
import os.path
import os
#from mpl_toolkits.mplot3d import Axes3D
#from memory_profiler import memory_usage
#from BloodManagementParsAndInitialState import *
from BloodManagementNetwork import *
from BloodManagementModel import *
from BloodManagementPolicy import initLPMatrices,Policy
def elapsed_since(start):
return time.strftime("%H:%M:%S", time.gmtime(time.time() - start))
def get_process_memory():
process = psutil.Process(os.getpid())
return process.get_memory_info().rss
def track(func):
def wrapper(*args, **kwargs):
mem_before = get_process_memory()
start = time.time()
result = func(*args, **kwargs)
elapsed_time = elapsed_since(start)
mem_after = get_process_memory()
print("{}: memory before: {:,}, after: {:,}, consumed: {:,}; exec time: {}".format(
func.__name__,
mem_before, mem_after, mem_after - mem_before,
elapsed_time))
return result
return wrapper
def printParams(params):
print(params)
def loadParams(filename):
parDf = pd.read_excel(filename, sheet_name = 'Parameters')
parDict=parDf.set_index('Index').T.to_dict('list')
params = {key:v for key, value in parDict.items() for v in value}
params['PRINT']=False
params['PRINT_ALL']=False
params['OUTPUT_FILENAME'] = 'DetailedOutput.xlsx'
params['SHOW_PLOTS']=False
#Set here bloodtypes and substitutions that are allowed
params['Bloodtypes'] = ['AB+', 'AB-', 'A+', 'A-','B+', 'B-', 'O+', 'O-']
params['NUM_BLD_TYPES'] = len(params['Bloodtypes'])
b = [(x,y) for x in params['Bloodtypes'] for y in params['Bloodtypes']]
f = [False]*(len(params['Bloodtypes'])*len(params['Bloodtypes']))
c = {k:v for k,v in zip(b, f)}
#In case we want to allow subs
c[('AB+', 'AB+')] = True
c[('AB-', 'AB+')] = True
c[('AB-', 'AB-')] = True
c[('A+', 'AB+')] = True
c[('A+', 'A+')] = True
c[('A-', 'AB+')] = True
c[('A-', 'AB-')] = True
c[('A-', 'A+')] = True
c[('A-', 'A-')] = True
c[('B+', 'AB+')] = True
c[('B+', 'B+')] = True
c[('B-', 'AB+')] = True
c[('B-', 'AB-')] = True
c[('B-', 'B+')] = True
c[('B-', 'B-')] = True
c[('O+', 'AB+')] = True
c[('O+', 'A+')] = True
c[('O+', 'B+')] = True
c[('O+', 'O+')] = True
c[('O-', 'AB+')] = True
c[('O-', 'A+')] = True
c[('O-', 'B+')] = True
c[('O-', 'O+')] = True
c[('O-', 'AB-')] = True
c[('O-', 'A-')] = True
c[('O-', 'B-')] = True
c[('O-', 'O-')] = True
params['SubMatrix'] = c
# Set here max age of blood
params['MAX_AGE'] = 3
params['Ages'] = list(range(params['MAX_AGE']))
params['NUM_BLD_NODES'] = params['NUM_BLD_TYPES'] * params['MAX_AGE']
# Set here blood demand nodes
params['Surgerytypes'] = ['Urgent', 'Elective']
params['Substitution'] = [True]
params['NUM_SUR_TYPES'] = len(params['Surgerytypes'])
params['NUM_DEM_NODES'] = params['NUM_BLD_TYPES'] * params['NUM_SUR_TYPES'] * len(params['Substitution'])
# Solver params
params['SLOPE_CAPAC_LAST'] = 100000
params['MIN_CONST'] = 0.01
params['EPSILON'] = 0.001
# Set here number of iterations and time periods
params['NUM_TRAINNING_ITER'] = int(params['NUM_TRAINNING_ITER'])
params['NUM_TESTING_ITER']=int(params['NUM_TESTING_ITER'])
params['NUM_ITER'] = int(params['NUM_TESTING_ITER'] + params['NUM_TRAINNING_ITER']) #Total number of iterations
params['MAX_TIME']=int(15)
params['Times'] = list(range(params['MAX_TIME']))
# Set here VFA parameters
# - If USE_VFA is set to True we are going to use VFA's when making the decisions -
# - If USE_VFA is set to False, it means that a MYOPIC policy is going to be considered and all the parameters
#related to VFA's (such as DISCOUNT_FACTOR, LOAD_VFA, SAVE_VFA, STEPSIZE_RULE, PROJECTION_ALGO,
#IS_PERTUB,SEED_TRAINING are ignored)
#params['USE_VFA'] = True #If set to True we are going to use VFA's when making the decisions - False means a MYOPIC policy
params['DISCOUNT_FACTOR'] = 0.95
params['LOAD_VFA'] = False #If set to True we are going to initialize the VFA's with VFA's from previous runs - instead of all zeros
params['NAME_LOAD_VFA_PICKLE'] = "Bld_Net10_P_C_Subs.pickle"
params['SAVE_VFA'] = False #If we want to save/update the VFA's to be used in future runs
params['NAME_SAVE_VFA_PICKLE'] = "Bld_Net10_P_C_Subs.pickle"
# Set here the stepsize parameters
params['STEPSIZE_RULE'] = 'C' #Possible values: 'C' for Constant or 'A' for AdaGrad
params['NUM_ITER_STEP_ONE'] = 0 #Number of iterations with stepsize one
# Set here the CONSTANT stepsize parameter (not considered if AdaGrad stepsize is being used)
#params['ALPHA'] = 0.2 #the stepsize for the other iterations
#Set here the AdaGrad stepsize parameters (not considered if Constant stepsize is being used)
params['STEP_EPS'] = 0.00000001
params['ETA'] = 1
# Set here the algorithm that should be use for projection back the slopes that break concavity
# Possible algorithms for projecting back the slopes to enforce concavity are:
# - 'Avg' to average the slopes that break concavity; \
# - 'Copy' to copy the newly updated vbar to the slopes that break concavity
# - 'Up' to update the slopes that break concavity with the current stepsize and vhat
params['PROJECTION_ALGO'] = 'Up'
#Perturb the solution during training iterations for exploration
params['IS_PERTUB'] = False
params['LAMBDA_PERTUB'] = 1
params['PERTUB_GEN'] = np.random.RandomState(13247)
# Set here one step contribution function parameters - BONUSES and PENALTIES
params['AGE_BONUS']=np.zeros(params['MAX_AGE'])
# params['AGE_BONUS']=[2]*MAX_AGE
# params['AGE_BONUS']=list(reversed(list(range(0,MAX_AGE))))
# params['AGE_BONUS']=list(range(0,MAX_AGE))
# params['AGE_BONUS']=[0.5, 2] #It has to be the same length as MAX_AGE
params['INFEASIABLE_SUBSTITUTION_PENALTY'] = -50
params['NO_SUBSTITUTION_BONUS'] = 5
params['URGENT_DEMAND_BONUS'] = 30
params['ELECTIVE_DEMAND_BONUS'] = 5
params['DISCARD_BLOOD_PENALTY'] = -10 #applied for the oldest age in the holding/vfa arcs
# Set here Random Seeds
params['SEED_TRAINING'] = 1090377
params['SEED_TESTING'] = 8090373
#Set here the distribution for demand/donation/initial inventory
params['SAMPLING_DIST'] = 'P' #Possible values: 'P' for Poisson or 'U' for uniform
params['POISSON_FACTOR'] = 1
# Set here max demand by blood type (when 'U'niform dist) or mean demand (when 'P'oisson dist)
params['DEFAULT_VALUE_DIST'] = 20
d = [params['DEFAULT_VALUE_DIST']] * params['NUM_BLD_TYPES']
params['MAX_DEM_BY_BLOOD'] = {k:v for k,v in zip(params['Bloodtypes'], d)}
params['MAX_DON_BY_BLOOD'] = {k:v for k,v in zip(params['Bloodtypes'], d)}
# Set here demand by blood type (for blood types that are different than the params['DEFAULT_VALUE_DIST'])
params['MAX_DEM_BY_BLOOD']['AB+'] = 3
params['MAX_DEM_BY_BLOOD']['B+'] = 9
params['MAX_DEM_BY_BLOOD']['O+'] = 18
params['MAX_DEM_BY_BLOOD']['B-'] = 2
params['MAX_DEM_BY_BLOOD']['AB-'] = 3
params['MAX_DEM_BY_BLOOD']['A-'] = 6
params['MAX_DEM_BY_BLOOD']['O-'] = 7
params['MAX_DEM_BY_BLOOD']['A+'] = 14
params['MAX_DEM_BY_BLOOD']['AB+'] = 0
params['MAX_DEM_BY_BLOOD']['B+'] = 0
params['MAX_DEM_BY_BLOOD']['O+'] = 0
params['MAX_DEM_BY_BLOOD']['B-'] = 0
params['MAX_DEM_BY_BLOOD']['AB-'] = 0
params['MAX_DEM_BY_BLOOD']['A-'] = 10
params['MAX_DEM_BY_BLOOD']['O-'] = 10
params['MAX_DEM_BY_BLOOD']['A+'] = 0
params['MAX_DEM_BY_BLOOD']['AB+'] = 3
params['MAX_DEM_BY_BLOOD']['B+'] = 9
params['MAX_DEM_BY_BLOOD']['O+'] = 18
params['MAX_DEM_BY_BLOOD']['B-'] = 2
params['MAX_DEM_BY_BLOOD']['AB-'] = 3
params['MAX_DEM_BY_BLOOD']['A-'] = 6
params['MAX_DEM_BY_BLOOD']['O-'] = 7
params['MAX_DEM_BY_BLOOD']['A+'] = 14
#params['DEFAULT_VALUE_DIST']
# Set here donation by blood type (for blood types that are different than the params['DEFAULT_VALUE_DIST'])
params['MAX_DON_BY_BLOOD']['AB+'] = 0
params['MAX_DON_BY_BLOOD']['B+'] = 0
params['MAX_DON_BY_BLOOD']['O+'] = 0
params['MAX_DON_BY_BLOOD']['B-'] = 0
params['MAX_DON_BY_BLOOD']['AB-'] = 0
params['MAX_DON_BY_BLOOD']['A-'] = 10
params['MAX_DON_BY_BLOOD']['O-'] = 10
params['MAX_DON_BY_BLOOD']['A+'] = 0
params['MAX_DON_BY_BLOOD']['AB+'] = 3
params['MAX_DON_BY_BLOOD']['B+'] = 9
params['MAX_DON_BY_BLOOD']['O+'] = 18
params['MAX_DON_BY_BLOOD']['B-'] = 2
params['MAX_DON_BY_BLOOD']['AB-'] = 3
params['MAX_DON_BY_BLOOD']['A-'] = 6
params['MAX_DON_BY_BLOOD']['O-'] = 7
params['MAX_DON_BY_BLOOD']['A+'] = 14
#The default weights to split the demand of a blood type is equal weights. The only requirement is that each
#weight is positive and they add up to 1.
#Default
params['SURGERYTYPES_PROP'] = {k:1/len(params['Surgerytypes']) for k in params['Surgerytypes']}
params['SUBSTITUTION_PROP'] = {k:1/len(params['Substitution']) for k in params['Substitution']}
# Set here the weights for each surgery type (if different than the default)
params['SURGERYTYPES_PROP']['Urgent'] = 1/2
params['SURGERYTYPES_PROP']['Elective'] = 1 - params['SURGERYTYPES_PROP']['Urgent']
# Set here the weights for each substitution type (if different than the default)
params['SUBSTITUTION_PROP'][True] = 1
#params['SUBSTITUTION_PROP'][False] = 1 - params['SUBSTITUTION_PROP'][True]
#Set here random surge parameters
#params['TIME_PERIODS_SURGE'] = set([4,8,10,12,14])
params['TIME_PERIODS_SURGE'] = set([3,6,10,13])
#SURGE_PROB = 0.7
params['SURGE_FACTOR'] = 6 #The surge demand is always going to be poisson with mean SURGE_FACTOR*params['MAX_DEM_BY_BLOOD'], even if the regular demand distribution is Uniform
#Set here the weights for the utility function - urgent coverage, elective coverage, proportion of blood discarded
params['WEIGHT_URGENT']=10
params['WEIGHT_ELECTIVE']=1
params['WEIGHT_DISCARDED']=3
if (params['SAMPLING_DIST'] == 'P'):
params['MAX_DEM_BY_BLOOD'] = {k: int(v * params['POISSON_FACTOR']) for k, v in params['MAX_DEM_BY_BLOOD'].items()}
params['MAX_DON_BY_BLOOD'] = {k: int(v * params['POISSON_FACTOR']) for k, v in params['MAX_DON_BY_BLOOD'].items()}
params['AVG_TOTAL_DEMAND'] = sum(params['MAX_DEM_BY_BLOOD'].values())
params['AVG_TOTAL_SUPPLY'] = sum(params['MAX_DON_BY_BLOOD'].values())
params['NUM_PARALLEL_LINKS'] = int(params['MAX_AGE']/2 * max(params['MAX_DON_BY_BLOOD'].values()))
#print("Exogenous info dist: Poisson ")
else:
params['AVG_TOTAL_DEMAND'] = sum(params['MAX_DEM_BY_BLOOD'].values())/2
params['AVG_TOTAL_SUPPLY'] = sum(params['MAX_DON_BY_BLOOD'].values())/2
params['NUM_PARALLEL_LINKS'] = int(params['MAX_AGE']/2 * max(params['MAX_DON_BY_BLOOD'].values()))
#print("Exogenous info dist: Uniform")
#Checking if MYOPIC policy
if not params['USE_VFA']:
params['ALPHA'] = 0
params['LOAD_VFA'] = False
params['SAVE_VFA'] = False
params['NUM_TRAINNING_ITER'] = 0
params['NUM_ITER'] = params['NUM_TESTING_ITER']
params['NUM_PARALLEL_LINKS'] = 1
print("Printing params dict\n")
printParams(params)
if (params['SAMPLING_DIST'] == 'P'):
print("Exogenous info dist: Poisson ")
else:
print("Exogenous info dist: Uniform")
print("Demand parameters by blood type ",params['MAX_DEM_BY_BLOOD'])
print("There are ",params['NUM_SUR_TYPES'] * len(params['Substitution'])," demand nodes for each blood type")
print("Weights SURGERYTYPES_PROP ",params['SURGERYTYPES_PROP'])
print("Weights SUBSTITUTION_PROP ",params['SUBSTITUTION_PROP'])
print("Donation parameters by blood type ",params['MAX_DON_BY_BLOOD'])
print("AVG TOTAL DEMAND ",params['AVG_TOTAL_DEMAND'])
print("AVG TOTAL SUPPLY ",params['AVG_TOTAL_SUPPLY'])
print("NUM PARALLEL LINKS ",params['NUM_PARALLEL_LINKS'])
print("Possible surge time periods ", params['TIME_PERIODS_SURGE'])
print("SURGE_PROB ", params['SURGE_PROB'], " and SURGE_FACTOR ", params['SURGE_FACTOR'])
return params
def initOutputListHeaders(params):
labelsDemandExo=['Iteration','Time','Bloodtype','Urgency','isSubAllowed','DemandValue']
labelsDonationExo=['Iteration','Time','Bloodtype','DonationValue']
labelsSupplyPre=['Iteration','Time','BloodType','Age','PreInv']
labelsSupplyPost=['Iteration','Time','BloodType','Age','PostInv']
labelsSlopesList=['Iteration','Time','BloodType','Age']
vNames = ["v_"+str(r) for r in list(range(params['NUM_PARALLEL_LINKS']))]
labelsSlopesList = labelsSlopesList + vNames
headerSolDemList =['Iteration', 'Time','BloodTypeS', 'Age','BloodTypeD', 'Urgency', 'SubsAllowed', 'isCompatible', 'Contrib', 'Value']
headerSolHoldList = ['Iteration','Time','BloodTypeS','Age','Value']
headerSimuList = ['Iteration','ElapsedTime','Stepsize','ObjVal','isTrainning']
headerUpdateVfaList = ['Iteration','Time','BloodType','Age','R','vhat','vbarOld','sqGrad','stepsize','vbarNew']
return(labelsDemandExo, labelsDonationExo,labelsSupplyPre,labelsSupplyPost,labelsSlopesList,headerSolDemList,headerSolHoldList,headerSimuList,headerUpdateVfaList)
def convertToDfOutputLists(params,Bld_Net,demandExoList, donationExoList, supplyPreList, supplyPostList, slopesList, solDemList, solHoldList, simuList, updateVfaList):
labelsDemandExo, labelsDonationExo, labelsSupplyPre, labelsSupplyPost, labelsSlopesList, headerSolDemList, headerSolHoldList, headerSimuList, headerUpdateVfaList = initOutputListHeaders(params)
#Flatteting the lists
dfSimu = pd.DataFrame.from_records(simuList,columns=headerSimuList)
demandExoListFlat = [(ite,t,dnode[0],dnode[1],dnode[2],dvalue) for ite,t,d in demandExoList for dnode,dvalue in zip(Bld_Net.demandnodes,d)]
dfDemandExo = pd.DataFrame.from_records(demandExoListFlat,columns=labelsDemandExo)
donationExoListFlat = [(ite,t,dtype,dvalue) for ite,t,d in donationExoList for dtype,dvalue in zip(params['Bloodtypes'],d)]
dfDonationExo = pd.DataFrame.from_records(donationExoListFlat,columns=labelsDonationExo)
supplyPreListFlat = [(ite,t,bnode[0],bnode[1],bvalue) for ite,t,b in supplyPreList for bnode,bvalue in zip(Bld_Net.bloodnodes,b)]
dfSupplyPre = pd.DataFrame.from_records(supplyPreListFlat,columns=labelsSupplyPre)
supplyPostListFlat = [(ite,t,bnode[0],bnode[1],bvalue) for ite,t,b in supplyPostList for bnode,bvalue in zip(Bld_Net.bloodnodes,b)]
dfSupplyPost = pd.DataFrame.from_records(supplyPostListFlat,columns=labelsSupplyPost)
solDemListFlat = [(ite,t,bld[0],bld[1],dem[0],dem[1],dem[2],params['SubMatrix'][(bld[0], dem[0])],Bld_Net.demweights[(bld,dem)],xbd) for ite,t,xDem in solDemList for bld,xb in zip(Bld_Net.bloodnodes,xDem) for dem,xbd in zip(Bld_Net.demandnodes,xb)]
dfSolDem = pd.DataFrame.from_records(solDemListFlat,columns=headerSolDemList)
solHoldListFlat = [(ite,t,bnode[0],bnode[1],hvalue) for ite,t,h in solHoldList for bnode,hvalue in zip(Bld_Net.bloodnodes,h)]
dfSolHold = pd.DataFrame.from_records(solHoldListFlat,columns=headerSolHoldList)
slopesListFlat = [(vnode[0],vnode[1],bnode[0],bnode[1],*list(vnode[2])) for vnode,bnode in zip(slopesList,Bld_Net.bloodnodes*params['NUM_ITER']*params['MAX_TIME'])]
dfSlopes = pd.DataFrame.from_records(slopesListFlat,columns=labelsSlopesList)
dfUpdateVfa = pd.DataFrame.from_records(updateVfaList,columns=headerUpdateVfaList)
return dfDemandExo, dfDonationExo, dfSupplyPre, dfSupplyPost, dfSlopes, dfSolDem, dfSolHold, dfSimu, dfUpdateVfa
def printDfsToOutputFile(params,dfDemandExo, dfDonationExo, dfSupplyPre, dfSupplyPost, dfSlopes, dfSolDem, dfSolHold, dfSimu, dfUpdateVfa):
t_init_print = time.time()
print("Started printing file")
# print to excel file
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter(params['OUTPUT_FILENAME'], engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
dfSimu.to_excel(writer, sheet_name='Simu')
if params['PRINT_ALL']:
dfDemandExo.to_excel(writer, sheet_name='DemandExo')
dfDonationExo.to_excel(writer, sheet_name='DonationExo')
dfSupplyPre.to_excel(writer, sheet_name='SupplyPre')
dfSolDem.to_excel(writer, sheet_name='SolDem')
dfSolHold.to_excel(writer, sheet_name='HoldDem')
dfSupplyPost.to_excel(writer, sheet_name='SupplyPost')
dfSlopes.to_excel(writer, sheet_name='SlopesList')
dfUpdateVfa.to_excel(writer, sheet_name='UpdatesVfa')
# Close the Pandas Excel writer and output the Excel file.
writer.save()
print("Finished printing files in {:.2f} secs".format(time.time()-t_init_print))
def Main():
t_global_init = time.time()
print("********************Started Main*****************\n")
params = loadParams('Parameters.xlsx')
alpha = params['ALPHA']
#ite_TRA=np.arange(0, params['NUM_TRAINNING_ITER'], 1)
#selectedIte = list(set([0,5,10,19]) & set(ite_TRA))
# initializing the random seed for trainning iterations
np.random.seed(params['SEED_TRAINING'])
# initializing the blood network
Bld_Net = create_bld_net(params)
if (params['LOAD_VFA'] and os.path.exists(params['NAME_LOAD_VFA_PICKLE'])):
pickle_off = open(params['NAME_LOAD_VFA_PICKLE'],"rb")
Other_Bld_Net = pickle.load(pickle_off)
Bld_Net.varr = Other_Bld_Net.varr.copy()
Bld_Net.parallelarr = Other_Bld_Net.parallelarr.copy()
# initializing the model
state_names = ['BloodInventory', 'Demand', 'Donation']
decision_names = ['Hold', 'Contribution']
# initializing the lists that will store the all the info/decisions/states/slopes along the iterations for printing purposes
demandExoList, donationExoList, supplyPreList, supplyPostList, slopesList, solDemList, solHoldList, simuList, updateVfaList = [],[],[],[],[],[],[],[],[]
#initializing the policy
P = Policy(params,Bld_Net)
iteration = 0
obj = []
if (params['NUM_TRAINNING_ITER']>0):
print("\n Starting training iterations\n")
while iteration < params['NUM_ITER']:
IS_TRAINING = (iteration<params['NUM_TRAINNING_ITER'])
if (iteration==params['NUM_TRAINNING_ITER']):
print("Starting testing iterations! Currently at iteration ",iteration)
print("Reseting random seed!")
np.random.seed(params['SEED_TESTING'])
t_init = time.clock()
print('Iteration = ', iteration)
# Initial inventory
if (params['SAMPLING_DIST'] == 'P'):
bldinv_init = [int(np.random.poisson(params['MAX_DON_BY_BLOOD'][bld[0]])*.9) if bld[1]=='0' else int(np.random.poisson(params['MAX_DON_BY_BLOOD'][bld[0]])*(0.1/(params['MAX_AGE']-1))) for bld in Bld_Net.bloodnodes]
else:
bldinv_init = [round(np.random.uniform(0, params['MAX_DON_BY_BLOOD'][bld[0]])*.9) if bld[1]=='0' else round(np.random.uniform(0, params['MAX_DON_BY_BLOOD'][bld[0]])*(0.1/(params['MAX_AGE']-1))) for bld in Bld_Net.bloodnodes]
# Initial exogenous information
if (params['SAMPLING_DIST'] == 'P'):
exog_info_init = generate_exog_info_by_bloodtype_p(0, Bld_Net, params)
else:
exog_info_init = generate_exog_info_by_bloodtype(0, Bld_Net, params)
#initial state - the donation is irrelevant at time period zero - only the initial invetory counts
init_state = {'BloodInventory': bldinv_init, 'Demand': exog_info_init.demand, 'Donation' : exog_info_init.donation}
M = Model(state_names, decision_names, init_state, Bld_Net,params)
#print("Initial blood supply across {} types and {} ages is {}".format(params['NUM_BLD_TYPES'],params['MAX_AGE'],sum(M.bld_inv)))
#print("Initial demand across {} types and {} urgency states and {} substitution states is {}".format(params['NUM_BLD_TYPES'],params['NUM_SUR_TYPES'],len(params['Substitution']),sum(M.demand)))
t = 0
obj.append(0)
#Steping forward in time
while t < params['MAX_TIME']:
#Compute the solution for time period t - return the solution, the value, the dual and the updated lists
sol,val,x,hld,d,solDemList,solHoldList=P.getLPSol(params,M,iteration,t,solDemList,solHoldList,IS_TRAINING)
obj[iteration] += val
#Grabbing exogenous data to construct data frame
recordDemandExo = (iteration,t,M.Bld_Net.demandamount.copy())
demandExoList.append(recordDemandExo)
if (t==0):
recordDonationExo = (iteration,0,list(np.array(M.bld_inv)[::params['MAX_AGE']]))
donationExoList.append(recordDonationExo)
if (t<params['MAX_TIME']-1):
recordDonationExo = (iteration,t+1,M.donation.copy())
donationExoList.append(recordDonationExo)
#Grabbing pre-decision state to construct data frame
recordSupplyPre = (iteration,t,M.bld_inv.copy())
supplyPreList.append(recordSupplyPre)
if IS_TRAINING:
alpha,slopesList,updateVfaList = P.updateVFAs(params,M,iteration,t,d, slopesList,updateVfaList)
# build decision
dcsn = M.build_decision({'Hold': hld, 'Contribution': val})
M.transition_fn(dcsn)
#Grabbing post-decision state to construct data frame
recordSupplyPost = (iteration,t,M.bld_inv.copy())
supplyPostList.append(recordSupplyPost)
t += 1
# generate/read exogenous information
if (params['SAMPLING_DIST'] == 'P'):
exog_info = generate_exog_info_by_bloodtype_p(t, Bld_Net, params)
else:
exog_info = generate_exog_info_by_bloodtype(t, Bld_Net, params)
M.exog_info_fn(exog_info)
# copy v to the parallel links
for t in params['Times']:
for hld in M.Bld_Net.holdnodes:
parArr = 1 * M.Bld_Net.varr[(t,hld, M.Bld_Net.supersink)]
M.Bld_Net.add_parallel(t,hld, M.Bld_Net.supersink, parArr)
t_end = time.clock()
recordSimu = (iteration,int(t_end-t_init),alpha,obj[iteration],(iteration<params['NUM_TRAINNING_ITER']))
simuList.append(recordSimu)
print("***Finishing iteration {} in {:.2f} secs. Total contribution: {:.2f}***\n".format(recordSimu[0],recordSimu[1],recordSimu[3]))
iteration += 1
#End of iterations
###########################################################################################################################################
if (params['SAVE_VFA']):
pickling_on = open(params['NAME_SAVE_VFA_PICKLE'],"wb")
pickle.dump(M.Bld_Net, pickling_on)
pickling_on.close()
###########################################################################################################################################
#Computing stats and plots
###########################################################################################################################################
dfDemandExo, dfDonationExo, dfSupplyPre, dfSupplyPost, dfSlopes, dfSolDem, dfSolHold, dfSimu, dfUpdateVfa = convertToDfOutputLists(params,Bld_Net,demandExoList, donationExoList, supplyPreList, supplyPostList, slopesList, solDemList, solHoldList, simuList, updateVfaList)
policy = params['USE_VFA'] and 'VFA-Based' or 'MYOPIC'
surge = params['SURGE_PROB']>0 and "SURGE_"+str(params['SURGE_PROB']) or "NO_SURGE"
instance = "Policy{}_{}_PEN_{:,}_ALPHA_{:.2f}".format(policy,surge,params['BLOOD_FOR_ELECTIVE_PENALTY'],params['ALPHA'])
#Average Contribution
meanTesting = dfSimu.groupby('isTrainning')['ObjVal'].mean()[False]
#Total Blood discarded
totalDiscarded = dfSolHold.loc[(dfSolHold.Age.astype(int)>params['MAX_AGE']-2)&(dfSolHold.Iteration>=params['NUM_TRAINNING_ITER']),:].copy()['Value'].sum()
#Total Donation
totalDonation = dfDonationExo[dfDonationExo.Iteration>=params['NUM_TRAINNING_ITER']].copy()['DonationValue'].sum()
#Coverage
dfCoverage = dfSolDem.groupby(['BloodTypeD', 'Urgency','Iteration', 'Time'])['Value'].sum()
dfCoverage.index = dfCoverage.index.rename("Bloodtype", level=0)
dfCoverage = pd.concat([dfCoverage,dfDemandExo.groupby(['Bloodtype', 'Urgency','Iteration', 'Time'])['DemandValue'].sum()],axis=1)
dfCoverage['Ratio']= dfCoverage['Value']/ dfCoverage['DemandValue']
dfCoverage_agg_ite = dfCoverage.groupby(['Bloodtype', 'Urgency','Iteration'])['Ratio'].mean().reset_index()
numTra = params['NUM_TRAINNING_ITER']
dfCoverage_agg_test = dfCoverage_agg_ite.query('Iteration >= @numTra')
dfPrintIte=dfCoverage_agg_test.pivot_table('Ratio',index='Bloodtype',columns='Urgency')
finalCoverage=dfCoverage_agg_test.groupby('Urgency')['Ratio'].mean()
coverage = "Average Coverage: - Urgent: {:.2f} Elective: {:.2f} Avg: {:.2f}".format(finalCoverage['Urgent'],finalCoverage['Elective'],dfCoverage_agg_ite['Ratio'].mean())
#dfUtility = dfCoverage.query('Iteration >= @numTra').copy().reset_index()
#dfUtility['Weight']=-1
#dfUtility['Score']=0
#dfUtility.loc[dfUtility.Urgency=="Elective",'Weight']=1
#dfUtility.loc[dfUtility.Urgency=="Urgent",'Weight']=100
#dfUtility.loc[(dfUtility.Urgency=="Urgent") & (dfUtility.Ratio>.9),'Score']=1
#sumRatio=(dfUtility['Ratio']*dfUtility['Weight']).sum()
#sumWeight=(dfUtility['Weight']).sum()
#sumScore=(dfUtility['Score']).sum()
#utility=sumRatio/sumWeight
#Utility function
utility=(params['WEIGHT_URGENT']*round(finalCoverage['Urgent'],2)+params['WEIGHT_ELECTIVE']*round(finalCoverage['Elective'],2))*100
modifiedUtil=utility-params['WEIGHT_DISCARDED']*100*round(totalDiscarded/totalDonation,2)
###########################################################################################################################################
#Figure 1 - Total Contribution along iterations
ite = np.arange(0, params['NUM_ITER'], 1)
ite_TRA = np.arange(0, params['NUM_TRAINNING_ITER'], 1)
ite_TES = np.arange(0, params['NUM_TESTING_ITER'], 1) + params['NUM_TRAINNING_ITER']
fig_ite, ax_ite = plt.subplots(figsize=(16,8))
ax_ite.plot(ite,dfSimu['ObjVal'],'g-',label='_nolegend_')
ax_ite.plot(ite_TRA,dfSimu['ObjVal'][ite_TRA],'g-',label="Training",marker='o')
ax_ite.plot(ite_TES,dfSimu['ObjVal'][ite_TES],'b-',label="Testing",marker='o')
ax_ite.hlines(meanTesting, ite_TES[0], ite_TES[-1], color='b',linestyle='--',label="Avg Testing",linewidth=4)
ax_ite.axvline(ite_TES[0], 0, 1, color='k',linestyle=':')
ax_ite.legend()
ax_ite.set_xlabel('Iterations',fontsize=12)
ax_ite.set_ylabel('$',fontsize=12)
#ax_ite.set_ylim([20000,34000])
ax_ite.set_title("Policy {}_{} - Total contributions \n Avg total contribution during TESTING iterations: ${:,}\n Final utility: {:.0f}".format(policy,surge,meanTesting,modifiedUtil))
ax_ite.set_xticks(ite)
ax_ite.set_xticklabels(list(ite_TRA)+list(np.arange(0, params['NUM_TESTING_ITER'], 1)))
for c in ite_TES:
ax_ite.get_xticklabels()[c].set_color("b")
###########################################################################################################################################
###########################################################################################################################################
#Figure 2 - Exogenous processes - Demand and Donation
fig_exo, ax_exo = plt.subplots(2,1,figsize=(16,8),sharex=True)
dfDemandExoP = dfDemandExo[dfDemandExo.Iteration>=params['NUM_TRAINNING_ITER']].copy()
dfDemandExoP['Iteration'] = dfDemandExoP['Iteration'] - params['NUM_TRAINNING_ITER']
dfPrintDemand = dfDemandExoP.pivot_table('DemandValue',index='Time',columns='Iteration',aggfunc='sum')
l=dfPrintDemand.plot(ax=ax_exo[0],title="Total Demand - {}".format(surge),legend=False)
dfDonationExoP = dfDonationExo[dfDonationExo.Iteration>=params['NUM_TRAINNING_ITER']].copy()
dfDonationExoP['Iteration'] = dfDonationExoP['Iteration'] - params['NUM_TRAINNING_ITER']
dfPrintDonation = dfDonationExoP.pivot_table('DonationValue',index='Time',columns='Iteration',aggfunc='sum')
dfPrintDonation.plot(ax=ax_exo[1],title="Total Donation",legend=False)
ax_exo[1].set_xlabel("Time period",fontsize=12)
ax_exo[0].set_ylabel("Units",fontsize=12)
ax_exo[1].set_ylabel("Units",fontsize=12)
fig_exo.legend(l,labels=list(np.arange(0, params['NUM_TESTING_ITER'], 1)),title="Iteration",loc="center right",fancybox=True, shadow=True)
fig_exo.suptitle("Exogenous processes along the testing iterations")
###########################################################################################################################################
dfInv = dfSupplyPre[dfSupplyPre.Iteration>=params['NUM_TRAINNING_ITER']].copy()
dfInv['Iteration'] = dfInv['Iteration'] - params['NUM_TRAINNING_ITER']
###########################################################################################################################################
#Figure 3 - Pre decision inventory levels by age
fig_inv, ax_inv = plt.subplots(3,1,figsize=(16,10),sharex=True)
for age in [0,1,2]:
strage=str(age)
dfPrint = dfInv[dfInv.Age == strage].pivot_table('PreInv',index=['Time'],columns=['Iteration'],aggfunc='sum')
l=dfPrint.plot(ax=ax_inv[age],legend=False)
dfPrintAvg = dfInv[dfInv.Age == strage].groupby(['Time','Iteration'])['PreInv'].sum()
dfPrintAvg = dfPrintAvg.groupby('Time').mean()
avg_line = ax_inv[age].plot(dfPrintAvg.index,dfPrintAvg.values,'k',linestyle=':',marker='s',markersize='12',label='Average')
ax_inv[age].set_title("Age: {} - Avg inventory level: {:.0f}".format(age,dfPrintAvg.values.mean()))
ax_inv[age].set_ylabel("Units",fontsize=12)
ax_inv[2].set_xlabel("Time period",fontsize=12)
fig_inv.suptitle("Policy {}_{} \n Pre-decision inventory level all blood types".format(policy,surge))
fig_inv.legend([l,avg_line],labels=list(np.arange(0, params['NUM_TESTING_ITER'], 1))+["Avg"],title="Iteration",loc='center right',fancybox=True, shadow=True, ncol=1)
###########################################################################################################################################
###########################################################################################################################################
#Figure 4 - Pre decision inventory levels by bloodtype
fig_inv_blood, ax_inv_blood = plt.subplots(4,2,figsize=(16,10),sharex=True)
row = -1
for m,b in enumerate(params['Bloodtypes']):
col= (m)%2
if col == 0:
row+=1
ax_inv_blood[row,col].set_ylabel("Units",fontsize=8)
dfPrint = dfInv[dfInv.BloodType == b].pivot_table('PreInv',index=['Time'],columns=['Iteration'],aggfunc='sum')
l=dfPrint.plot(ax=ax_inv_blood[row,col],legend=False)
dfPrintAvg = dfInv[dfInv.BloodType == b].groupby(['Time','Iteration'])['PreInv'].sum()
dfPrintAvg = dfPrintAvg.groupby('Time').mean()
avg_line = ax_inv_blood[row,col].plot(dfPrintAvg.index,dfPrintAvg.values,'k',linestyle=':',marker='s',markersize='10',label='Average')
ax_inv_blood[row,col].set_title("Bloodtype: {} - Avg inventory level: {:.0f}".format(b,dfPrintAvg.values.mean()),fontsize=8)
ax_inv_blood[row,col].set_xlabel("Time Period",fontsize=8)
fig_inv_blood.suptitle("Policy {}_{} \n Pre-decision inventory level all ages".format(policy,surge))
fig_inv_blood.legend([l,avg_line],labels=list(np.arange(0, params['NUM_TESTING_ITER'], 1))+["Avg"],loc="center right", title="Iteration")
###########################################################################################################################################
###########################################################################################################################################
#Figure 5 - Pre decision inventory levels
dfPrintAvg = dfInv.groupby(['Time','Iteration'])['PreInv'].sum()
dfPrintAvg = dfPrintAvg.groupby('Time').mean()
fig_inv_total, ax_inv_total = plt.subplots(figsize=(16,8))
dfPrint = dfInv.pivot_table('PreInv',index=['Time'],columns=['Iteration'],aggfunc='sum')
dfPrint.plot(ax=ax_inv_total,legend=True)
first_legend = ax_inv_total.legend(title="Iteration")
avg_line = ax_inv_total.plot(dfPrintAvg.index,dfPrintAvg.values,'k',linestyle=':',marker='s',markersize='12',label='Average')
ax_inv_total.legend(title="Iteration")
ax_inv_total.set_xlabel("Time period")
ax_inv_total.set_ylabel("Units")
fig_inv_total.suptitle("Policy {}_{} \n Pre-decision inventory level all blood types and ages \n Average inventory level across time periods: {:.0f}".format(policy,surge,dfPrintAvg.values.mean()))
###########################################################################################################################################
###########################################################################################################################################
#Figure 6 - Discarded blood during testing iterations
dfDiscarded = dfSolHold.loc[(dfSolHold.Age.astype(int)>params['MAX_AGE']-2)&(dfSolHold.Iteration>=params['NUM_TRAINNING_ITER']),:].copy()
dfDiscarded = dfDiscarded.groupby(['BloodTypeS','Time'])['Value'].sum().reset_index()
dfDiscarded['Prop']=100*dfDiscarded['Value']/totalDonation
y_a = dfDiscarded.BloodTypeS.unique()
x_a = dfDiscarded.Time.unique()
discarded_matrix = np.reshape(np.array(dfDiscarded['Value']), (-1, len(x_a)))
fig_dis, ax_dis = plt.subplots(figsize=(16,8))
im = ax_dis.imshow(discarded_matrix, cmap='hot_r',origin='lower',aspect='auto',alpha=.9)
cbar = ax_dis.figure.colorbar(im, ax=ax_dis,label='Units of blood')
ax_dis.set_xticks(np.arange(len(x_a)))
ax_dis.set_yticks(np.arange(len(y_a)))
ax_dis.set_xticklabels(x_a)
ax_dis.set_yticklabels(y_a)
ax_dis.set_xlabel("Time Period")
ax_dis.set_title("Policy {}_{} \n Total discarded blood during TESTING iterations\n Proportion of blood discarded: {:.2f}%".format(policy,surge,totalDiscarded*100/totalDonation))
###########################################################################################################################################
###########################################################################################################################################
#Figure 7 - Demand Coverage - Testing iterations
fig_tes, ax_tes = plt.subplots(figsize=(16,8))
ax_tes.plot(dfPrintIte['Urgent'],marker='o')
ax_tes.plot(dfPrintIte['Elective'],marker='o')
ax_tes.set_title("Policy {}_{} \n Average coverage of demand by blood type and urgency level during TESTING iterations\n {} Coverage utility: {:.0f}".format(policy,surge,coverage,utility))
ax_tes.set_ylabel("Coverage ratio")
ax_tes.legend(title="Urgency level",loc='center left', bbox_to_anchor=(1, 0.5),fancybox=True, shadow=True, ncol=1)
###########################################################################################################################################
###########################################################################################################################################
#Figure 8 - Demand Coverage - Along Blood types
iteS = np.arange(0, params['NUM_ITER'], 1)
if True:
#selectedIte = sorted(list(set([0,5,10,19]) ))
selectedIte = sorted(list(set([0,5,10,19]) & set(iteS)))
fig_cover, ax_cover = plt.subplots(1,len(selectedIte),figsize=(16,8),sharey=True)
for i,ite in enumerate(selectedIte):
dfPrintIte = dfCoverage_agg_ite[dfCoverage_agg_ite.Iteration==ite]
dfPrintIte=dfPrintIte.pivot_table('Ratio',index='Bloodtype',columns='Urgency')
typIte='TES'
if ite <params['NUM_TRAINNING_ITER']:
typIte='TRA'
if len(selectedIte)==1:
ax_cover.plot(dfPrintIte['Urgent'],marker='o')
ax_cover.plot(dfPrintIte['Elective'],marker='o')
ax_cover.set_title("Iteration {} ({})".format(ite,typIte))
else:
ax_cover[i].plot(dfPrintIte['Urgent'],marker='o')
ax_cover[i].plot(dfPrintIte['Elective'],marker='o')
ax_cover[i].set_title("Iteration {} ({})".format(ite,typIte))
fig_cover.suptitle("Policy {}-{} \n Average coverage of demand by blood type and urgency level for different iterations".format(policy,surge))
if len(selectedIte)==1:
ax_cover.set_ylabel("Coverage ratio")
ax_cover.legend(title="Urgency level",loc='center left', bbox_to_anchor=(1, 0.5),fancybox=True, shadow=True, ncol=1)
else:
ax_cover[0].set_ylabel("Coverage ratio")
ax_cover[len(selectedIte)-1].legend(title="Urgency level",loc='center left', bbox_to_anchor=(1, 0.5),fancybox=True, shadow=True, ncol=1)
###########################################################################################################################################
###########################################################################################################################################
#Figure 9 - Demand Coverage - Along time periods
if True:
dfCoverage_agg_ite = dfCoverage.groupby(['Time', 'Urgency','Iteration'])['Ratio'].mean().reset_index()
#selectedIte = sorted(list(set([0,5,10,19]) ))
selectedIte = sorted(list(set([0,5,10,19]) & set(iteS)))
fig_cover_ite, ax_cover_ite = plt.subplots(1,len(selectedIte),figsize=(16,8),sharey=True,sharex=True)
for i,ite in enumerate(selectedIte):
dfPrintIte = dfCoverage_agg_ite[dfCoverage_agg_ite.Iteration==ite]
dfPrintIte=dfPrintIte.pivot_table('Ratio',index='Time',columns='Urgency')
typIte='TES'
if ite <params['NUM_TRAINNING_ITER']:
typIte='TRA'
if len(selectedIte)==1:
ax_cover_ite.plot(dfPrintIte['Urgent'],marker='o')
ax_cover_ite.plot(dfPrintIte['Elective'],marker='o')
ax_cover_ite.set_title("Iteration {} ({})".format(ite,typIte))
ax_cover_ite.set_xticks(list(range(0,params['MAX_TIME'],2)))
ax_cover_ite.set_xticklabels(list(range(0,params['MAX_TIME'],2)))
ax_cover_ite.set_xlabel("Time Period")
else:
ax_cover_ite[i].plot(dfPrintIte['Urgent'],marker='o')
ax_cover_ite[i].plot(dfPrintIte['Elective'],marker='o')
ax_cover_ite[i].set_title("Iteration {} ({})".format(ite,typIte))
ax_cover_ite[i].set_xticks(list(range(0,params['MAX_TIME'],2)))
ax_cover_ite[i].set_xticklabels(list(range(0,params['MAX_TIME'],2)))
ax_cover_ite[i].set_xlabel("Time Period")
fig_cover_ite.suptitle("Policy {}-{} \n Average coverage of demand by time period and urgency level for different iterations".format(policy,surge))
if len(selectedIte)==1:
ax_cover_ite.set_ylabel("Coverage ratio")
ax_cover_ite.legend(title="Urgency level",loc='center left', bbox_to_anchor=(1, 0.5),fancybox=True, shadow=True, ncol=1)
else:
ax_cover_ite[0].set_ylabel("Coverage ratio")
ax_cover_ite[len(selectedIte)-1].legend(title="Urgency level",loc='center left', bbox_to_anchor=(1, 0.5),fancybox=True, shadow=True, ncol=1)
###########################################################################################################################################
#Figure 10 - Histogram Demand Coverage - Along time periods
idx = pd.IndexSlice
dfCoverage=dfCoverage[dfCoverage.DemandValue>0].copy()
uncoverU = dfCoverage.loc[idx[:,['Urgent'],ite_TES,:],['DemandValue']].values.sum() - dfCoverage.loc[idx[:,['Urgent'],ite_TES,:],['Value']].values.sum()
uncoverE = dfCoverage.loc[idx[:,['Elective'],ite_TES,:],['DemandValue']].values.sum() - dfCoverage.loc[idx[:,['Elective'],ite_TES,:],['Value']].values.sum()
uncoverT = dfCoverage.loc[idx[:,:,ite_TES,:],['DemandValue']].values.sum() - dfCoverage.loc[idx[:,:,ite_TES,:],['Value']].values.sum()
demandU = dfCoverage.loc[idx[:,['Urgent'],ite_TES,:],['DemandValue']].values.sum()
demandE = dfCoverage.loc[idx[:,['Elective'],ite_TES,:],['DemandValue']].values.sum()
demandT = dfCoverage.loc[idx[:,:,ite_TES,:],['DemandValue']].values.sum()
fig_hist, ax_hist = plt.subplots(1,3,figsize=(16,8),sharey=True,sharex=True)
ax_hist[0].hist(dfCoverage.loc[idx[:,['Urgent'],ite_TES,:],['Ratio']].values, bins=11,color='tab:blue')
ax_hist[0].set_title("Urgent")
ax_hist[0].set_ylabel("Count")
ax_hist[0].set_xlim([0,1])
ax_hist[0].annotate('Uncovered Demand: {:,}\n Total Demand: {:,}'.format(int(uncoverU),demandU),xy=(.8, .975), xycoords='axes fraction',horizontalalignment='right', verticalalignment='top',fontsize=12)
ax_hist[1].hist(dfCoverage.loc[idx[:,['Elective'],ite_TES,:],['Ratio']].values, bins=11,color='tab:orange')
ax_hist[1].set_title("Elective")
ax_hist[1].set_xlabel("Coverage Ratio")
ax_hist[1].annotate('Uncovered Demand: {:,}\n Total Demand: {:,}'.format(int(uncoverE),demandE),xy=(.8, .975), xycoords='axes fraction',horizontalalignment='right', verticalalignment='top',fontsize=12)
ax_hist[2].hist(dfCoverage.loc[idx[:,:,ite_TES,:],['Ratio']].values, bins=11,color='tab:gray')
ax_hist[2].set_title("Total")
ax_hist[2].annotate('Uncovered Demand: {:,}\n Total Demand: {:,}'.format(int(uncoverT),demandT),xy=(.8, .975), xycoords='axes fraction',horizontalalignment='right', verticalalignment='top',fontsize=12)
fig_hist.suptitle("Policy {}-{} \n Histogram of blood coverage - All TESTING iterations and time periods\n {} Coverage utility: {:.0f}".format(policy,surge,coverage,utility))
###########################################################################################################################################
if params['SAVE_PLOTS']:
fig_ite.savefig('{}_Figure1.pdf'.format(instance))
fig_exo.savefig('{}_Figure2.pdf'.format(instance))
fig_inv.savefig('{}_Figure3.pdf'.format(instance))
fig_inv_blood.savefig('{}_Figure4.pdf'.format(instance))
fig_inv_total.savefig('{}_Figure5.pdf'.format(instance))
fig_dis.savefig('{}_Figure6.pdf'.format(instance))
fig_tes.savefig('{}_Figure7.pdf'.format(instance))
fig_cover.savefig('{}_Figure8.pdf'.format(instance))
fig_cover_ite.savefig('{}_Figure9.pdf'.format(instance))
fig_hist.savefig('{}_Figure10.pdf'.format(instance))
if params['SHOW_PLOTS']:
plt.show()
###########################################################################################################################################
#Printing the final results
print("\n*******************************************************************************************")
print("Policy {}_{}".format(policy,surge))
print(instance)
print("Average total contribution during TESTING iterations: ${:,}".format(meanTesting))
print(coverage)
print("Proportion of blood discarded: {:.2f}% ".format(totalDiscarded*100/totalDonation))
print("Final utility: {:.0f}".format(modifiedUtil))
print("*********************************************************************************************\n")
with open("OutputAll.txt", "a") as myfile:
print("{}\t{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}".format(instance,meanTesting,finalCoverage['Urgent'],finalCoverage['Elective'],dfCoverage_agg_ite['Ratio'].mean(),totalDiscarded/totalDonation,modifiedUtil),file=myfile)
###########################################################################################################################################
print("Total elapsed time {:.2f} secs".format(time.time()- t_global_init))
###########################################################################################################################################
#Printing output file
if params['PRINT']:
printDfsToOutputFile(params,dfDemandExo, dfDonationExo, dfSupplyPre, dfSupplyPost, dfSlopes, dfSolDem, dfSolHold, dfCoverage, dfUpdateVfa)
###########################################################################################################################################
#End Main
###############################################################################################################################################
###############################################################################################################################################
if __name__ == "__main__":
Main()
#mem = max(memory_usage(proc=Main))
#print("Maximum memory used: {0} MiB".format(str(mem)))