forked from rahulrahaman/Timestamp-and-SkipTag
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
198 lines (161 loc) · 6.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import time
import torch
from torch import Tensor
import numpy as np
import torchvision
import glob
import re
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def get_labels_start_end_time(frame_wise_labels, bg_class):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i + 1)
return labels, starts, ends
def levenstein(p, y, norm):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row + 1, n_col + 1], np.float)
for i in range(m_row + 1):
D[i, 0] = i
for i in range(n_col + 1):
D[0, i] = i
for j in range(1, n_col + 1):
for i in range(1, m_row + 1):
if y[j - 1] == p[i - 1]:
D[i, j] = D[i - 1, j - 1]
else:
D[i, j] = min(D[i - 1, j] + 1,
D[i, j - 1] + 1,
D[i - 1, j - 1] + 1)
if norm:
score = (1 - D[-1, -1] / max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, bg_class):
norm = True
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0*intersection / union)*([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def recog_file(filename, ground_truth_path, overlap, background_class_list):
# read ground truth
gt_file = ground_truth_path + re.sub('.*/', '/', filename)
with open(gt_file, 'r') as f:
gt_content = f.read().split('\n')[0:-1]
f.close()
# read recognized sequence
with open(filename, 'r') as f:
recog_content = f.read().split('\n')[0:-1] # framelevel recognition is in 6-th line of file
f.close()
n_frame_correct = 0
for i in range(len(recog_content)):
if recog_content[i] == gt_content[i]:
n_frame_correct += 1
edit_score_value = edit_score(recog_content, gt_content, background_class_list)
tp_arr = []
fp_arr = []
fn_arr = []
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s], background_class_list)
tp_arr.append(tp1)
fp_arr.append(fp1)
fn_arr.append(fn1)
return n_frame_correct, len(recog_content), tp_arr, fp_arr, fn_arr, edit_score_value
def calculate_mof(ground_truth_path_name, prediction_path, background_class):
overlap = [.1, .25, .5]
overlap_scores = np.zeros(3)
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
edit = 0
n_frames = 0
n_correct = 0
filelist = glob.glob(prediction_path + '/*txt')
print('Evaluate %d video files...' % len(filelist))
if len(filelist) == 0:
return 0, 0, overlap_scores
# loop over all recognition files and evaluate the frame error
for filename in filelist:
correct, frames, tp_arr, fp_arr, fn_arr, edit_score_value = recog_file(filename, ground_truth_path_name,
overlap, background_class)
n_correct += correct
n_frames += frames
edit += edit_score_value
for i in range(len(overlap)):
tp[i] += tp_arr[i]
fp[i] += fp_arr[i]
fn[i] += fn_arr[i]
if n_correct == 0 or n_frames == 0:
acc = 0
else:
acc = float(n_correct) * 100.0 / n_frames
print('frame accuracy: %0.4f' % acc)
final_edit_score = ((1.0 * edit) / len(filelist))
print('Edit score: %0.4f' % final_edit_score)
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
overlap_scores[s] = f1
return final_edit_score, acc, overlap_scores
def get_all_scores(pred, label, bg_class_list):
eps = 1e-5
scores = []
for overlap in [0.1, 0.25, 0.5]:
tp, fp, fn = f_score(pred, label, overlap=overlap, bg_class=[47])
precision = tp / float(tp + fp + eps)
recall = tp / float(tp + fn + eps)
if precision + recall > 0:
f1 = 2.0 * (precision * recall) / (precision + recall + eps)
f1 = np.nan_to_num(f1) * 100
else:
f1 = 0
# print(f"Score for F1@{overlap} = {f1:.3f}")
scores.append(f1)
edit = edit_score(pred, label, bg_class=bg_class_list)
# print(f"Edit score = {edit:.3f}")
scores.append(edit)
correct = np.sum(pred == label)
total = len(label)
mof = 100.0 * correct / total
# print(f"MoF score = {mof:.3f}")
scores.append(mof)
return scores