-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_glue.py
238 lines (198 loc) · 9.32 KB
/
run_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
""" Cutoff: A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation. """
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import dataclasses
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, Optional
import glob
import numpy as np
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset, GlueAugDataset
from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from utils import report_results
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if training_args.do_train and (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir):
raise ValueError(f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.")
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
# Setup logging
logging.basicConfig(
format="%(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
# filename=f'{training_args.output_dir}/log',
# filemode='w',
)
# logger.addHandler(logging.StreamHandler(sys.stdout))
logger = logging.getLogger()
logger.addHandler(logging.FileHandler(filename=f'{training_args.output_dir}/log', mode='w' if training_args.do_train else 'a'))
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
mnli_config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
num_labels=3,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
mnli_model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=mnli_config,
cache_dir=model_args.cache_dir,
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
pretrained_state_dict = {k: v for k, v in mnli_model.state_dict().items() if k != 'classifier.out_proj.bias' and k != 'classifier.out_proj.weight'}
model.load_state_dict(pretrained_state_dict, strict=False)
# Get datasets
train_dataset_class = GlueDataset
eval_dataset_class = GlueDataset
if training_args.do_aug and training_args.aug_type:
if training_args.aug_type in {'back_trans', 'cbert'}:
if data_args.train_aug_file:
train_dataset_class = GlueAugDataset
data_args.aug_type = training_args.aug_type
if data_args.dev_aug_file:
eval_dataset_class = GlueAugDataset
data_args.aug_type = training_args.aug_type
train_dataset = train_dataset_class(data_args, tokenizer=tokenizer) if training_args.do_train else None
eval_dataset = eval_dataset_class(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval or \
training_args.do_eval_all else None
def compute_metrics(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
if training_args.do_debug:
eval_dataset = eval_dataset[:100]
# training_args.do_aug = model_args.do_aug
# training_args.aug_type = data_args.aug_type
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None,
)
# if not training_args.evaluate_during_training:
# trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
elif training_args.do_eval:
# Evaluation
results = {}
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, evaluate=True))
for eval_dataset in eval_datasets:
eval_output = trainer.evaluate(eval_dataset=eval_dataset)
results[f'{eval_dataset.args.task_name}_acc'] = eval_output['eval_acc']
results[f'{eval_dataset.args.task_name}_loss'] = eval_output['eval_loss']
return results
elif training_args.do_eval_all:
results = []
logger.info('*** Evaluate all checkpoints ***')
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, evaluate=True))
all_checkpoints = glob.glob(f'{training_args.output_dir}/checkpoint-*')
all_checkpoints = sorted(all_checkpoints, key=lambda x: int(x.split('-')[-1]))
for checkpoint in all_checkpoints:
step = int(checkpoint.split('-')[-1])
model.load_pretrained(checkpoint)
model.to(training_args.device)
step_result = [step]
for eval_dataset in eval_datasets:
trainer.global_step = step
result = trainer.evaluate(eval_dataset=eval_dataset)
# result['step'] = step
step_result += [result['eval_acc'], result['eval_loss']]
results.append(step_result)
header = ['step']
for eval_dataset in eval_datasets:
header += [f'{eval_dataset.args.task_name}_acc', f'{eval_dataset.args.task_name}_loss']
logger.info("***** Eval results *****")
report_results(header, results, axis=1)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()