-
Notifications
You must be signed in to change notification settings - Fork 4
/
simpletransform.py
261 lines (233 loc) · 9.42 KB
/
simpletransform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
'''
Copyright (C) 2006 Jean-Francois Barraud, barraud@math.univ-lille1.fr
Copyright (C) 2010 Alvin Penner, penner@vaxxine.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
barraud@math.univ-lille1.fr
This code defines several functions to make handling of transform
attribute easier.
'''
import inkex, cubicsuperpath, bezmisc, simplestyle
import copy, math, re
def parseTransform(transf,mat=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]):
if transf=="" or transf==None:
return(mat)
stransf = transf.strip()
result=re.match("(translate|scale|rotate|skewX|skewY|matrix)\s*\(([^)]*)\)\s*,?",stransf)
#-- translate --
if result.group(1)=="translate":
args=result.group(2).replace(',',' ').split()
dx=float(args[0])
if len(args)==1:
dy=0.0
else:
dy=float(args[1])
matrix=[[1,0,dx],[0,1,dy]]
#-- scale --
if result.group(1)=="scale":
args=result.group(2).replace(',',' ').split()
sx=float(args[0])
if len(args)==1:
sy=sx
else:
sy=float(args[1])
matrix=[[sx,0,0],[0,sy,0]]
#-- rotate --
if result.group(1)=="rotate":
args=result.group(2).replace(',',' ').split()
a=float(args[0])*math.pi/180
if len(args)==1:
cx,cy=(0.0,0.0)
else:
cx,cy=list(map(float,args[1:]))
matrix=[[math.cos(a),-math.sin(a),cx],[math.sin(a),math.cos(a),cy]]
matrix=composeTransform(matrix,[[1,0,-cx],[0,1,-cy]])
#-- skewX --
if result.group(1)=="skewX":
a=float(result.group(2))*math.pi/180
matrix=[[1,math.tan(a),0],[0,1,0]]
#-- skewY --
if result.group(1)=="skewY":
a=float(result.group(2))*math.pi/180
matrix=[[1,0,0],[math.tan(a),1,0]]
#-- matrix --
if result.group(1)=="matrix":
a11,a21,a12,a22,v1,v2=result.group(2).replace(',',' ').split()
matrix=[[float(a11),float(a12),float(v1)], [float(a21),float(a22),float(v2)]]
matrix=composeTransform(mat,matrix)
if result.end() < len(stransf):
return(parseTransform(stransf[result.end():], matrix))
else:
return matrix
def formatTransform(mat):
return ("matrix(%f,%f,%f,%f,%f,%f)" % (mat[0][0], mat[1][0], mat[0][1], mat[1][1], mat[0][2], mat[1][2]))
def invertTransform(mat):
det = mat[0][0]*mat[1][1] - mat[0][1]*mat[1][0]
if det !=0: # det is 0 only in case of 0 scaling
# invert the rotation/scaling part
a11 = mat[1][1]/det
a12 = -mat[0][1]/det
a21 = -mat[1][0]/det
a22 = mat[0][0]/det
# invert the translational part
a13 = -(a11*mat[0][2] + a12*mat[1][2])
a23 = -(a21*mat[0][2] + a22*mat[1][2])
return [[a11,a12,a13],[a21,a22,a23]]
else:
return[[0,0,-mat[0][2]],[0,0,-mat[1][2]]]
def composeTransform(M1,M2):
a11 = M1[0][0]*M2[0][0] + M1[0][1]*M2[1][0]
a12 = M1[0][0]*M2[0][1] + M1[0][1]*M2[1][1]
a21 = M1[1][0]*M2[0][0] + M1[1][1]*M2[1][0]
a22 = M1[1][0]*M2[0][1] + M1[1][1]*M2[1][1]
v1 = M1[0][0]*M2[0][2] + M1[0][1]*M2[1][2] + M1[0][2]
v2 = M1[1][0]*M2[0][2] + M1[1][1]*M2[1][2] + M1[1][2]
return [[a11,a12,v1],[a21,a22,v2]]
def composeParents(node, mat):
trans = node.get('transform')
if trans:
mat = composeTransform(parseTransform(trans), mat)
if node.getparent().tag == inkex.addNS('g','svg'):
mat = composeParents(node.getparent(), mat)
return mat
def applyTransformToNode(mat,node):
m=parseTransform(node.get("transform"))
newtransf=formatTransform(composeTransform(mat,m))
node.set("transform", newtransf)
def applyTransformToPoint(mat,pt):
x = mat[0][0]*pt[0] + mat[0][1]*pt[1] + mat[0][2]
y = mat[1][0]*pt[0] + mat[1][1]*pt[1] + mat[1][2]
pt[0]=x
pt[1]=y
def applyTransformToPath(mat,path):
for comp in path:
for ctl in comp:
for pt in ctl:
applyTransformToPoint(mat,pt)
def fuseTransform(node):
if node.get('d')==None:
#FIXME: how do you raise errors?
raise AssertionError('can not fuse "transform" of elements that have no "d" attribute')
t = node.get("transform")
if t == None:
return
m = parseTransform(t)
d = node.get('d')
p = cubicsuperpath.parsePath(d)
applyTransformToPath(m,p)
node.set('d', cubicsuperpath.formatPath(p))
del node.attrib["transform"]
####################################################################
##-- Some functions to compute a rough bbox of a given list of objects.
##-- this should be shipped out in an separate file...
def boxunion(b1,b2):
if b1 is None:
return b2
elif b2 is None:
return b1
else:
return((min(b1[0],b2[0]), max(b1[1],b2[1]), min(b1[2],b2[2]), max(b1[3],b2[3])))
def roughBBox(path):
xmin,xMax,ymin,yMax = path[0][0][0][0],path[0][0][0][0],path[0][0][0][1],path[0][0][0][1]
for pathcomp in path:
for ctl in pathcomp:
for pt in ctl:
xmin = min(xmin,pt[0])
xMax = max(xMax,pt[0])
ymin = min(ymin,pt[1])
yMax = max(yMax,pt[1])
return xmin,xMax,ymin,yMax
def refinedBBox(path):
xmin,xMax,ymin,yMax = path[0][0][1][0],path[0][0][1][0],path[0][0][1][1],path[0][0][1][1]
for pathcomp in path:
for i in range(1, len(pathcomp)):
cmin, cmax = cubicExtrema(pathcomp[i-1][1][0], pathcomp[i-1][2][0], pathcomp[i][0][0], pathcomp[i][1][0])
xmin = min(xmin, cmin)
xMax = max(xMax, cmax)
cmin, cmax = cubicExtrema(pathcomp[i-1][1][1], pathcomp[i-1][2][1], pathcomp[i][0][1], pathcomp[i][1][1])
ymin = min(ymin, cmin)
yMax = max(yMax, cmax)
return xmin,xMax,ymin,yMax
def cubicExtrema(y0, y1, y2, y3):
cmin = min(y0, y3)
cmax = max(y0, y3)
d1 = y1 - y0
d2 = y2 - y1
d3 = y3 - y2
if (d1 - 2*d2 + d3):
if (d2*d2 > d1*d3):
t = (d1 - d2 + math.sqrt(d2*d2 - d1*d3))/(d1 - 2*d2 + d3)
if (t > 0) and (t < 1):
y = y0*(1-t)*(1-t)*(1-t) + 3*y1*t*(1-t)*(1-t) + 3*y2*t*t*(1-t) + y3*t*t*t
cmin = min(cmin, y)
cmax = max(cmax, y)
t = (d1 - d2 - math.sqrt(d2*d2 - d1*d3))/(d1 - 2*d2 + d3)
if (t > 0) and (t < 1):
y = y0*(1-t)*(1-t)*(1-t) + 3*y1*t*(1-t)*(1-t) + 3*y2*t*t*(1-t) + y3*t*t*t
cmin = min(cmin, y)
cmax = max(cmax, y)
elif (d3 - d1):
t = -d1/(d3 - d1)
if (t > 0) and (t < 1):
y = y0*(1-t)*(1-t)*(1-t) + 3*y1*t*(1-t)*(1-t) + 3*y2*t*t*(1-t) + y3*t*t*t
cmin = min(cmin, y)
cmax = max(cmax, y)
return cmin, cmax
def computeBBox(aList,mat=[[1,0,0],[0,1,0]]):
bbox=None
for node in aList:
m = parseTransform(node.get('transform'))
m = composeTransform(mat,m)
#TODO: text not supported!
d = None
if node.get("d"):
d = node.get('d')
elif node.get('points'):
d = 'M' + node.get('points')
elif node.tag in [ inkex.addNS('rect','svg'), 'rect', inkex.addNS('image','svg'), 'image' ]:
d = 'M' + node.get('x', '0') + ',' + node.get('y', '0') + \
'h' + node.get('width') + 'v' + node.get('height') + \
'h-' + node.get('width')
elif node.tag in [ inkex.addNS('line','svg'), 'line' ]:
d = 'M' + node.get('x1') + ',' + node.get('y1') + \
' ' + node.get('x2') + ',' + node.get('y2')
elif node.tag in [ inkex.addNS('circle','svg'), 'circle', \
inkex.addNS('ellipse','svg'), 'ellipse' ]:
rx = node.get('r')
if rx is not None:
ry = rx
else:
rx = node.get('rx')
ry = node.get('ry')
cx = float(node.get('cx', '0'))
cy = float(node.get('cy', '0'))
x1 = cx - float(rx)
x2 = cx + float(rx)
d = 'M %f %f ' % (x1, cy) + \
'A' + rx + ',' + ry + ' 0 1 0 %f,%f' % (x2, cy) + \
'A' + rx + ',' + ry + ' 0 1 0 %f,%f' % (x1, cy)
if d is not None:
p = cubicsuperpath.parsePath(d)
applyTransformToPath(m,p)
bbox=boxunion(refinedBBox(p),bbox)
elif node.tag == inkex.addNS('use','svg') or node.tag=='use':
refid=node.get(inkex.addNS('href','xlink'))
path = '//*[@id="%s"]' % refid[1:]
refnode = node.xpath(path)
bbox=boxunion(computeBBox(refnode,m),bbox)
bbox=boxunion(computeBBox(node,m),bbox)
return bbox
def computePointInNode(pt, node, mat=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]):
if node.getparent() is not None:
applyTransformToPoint(invertTransform(composeParents(node, mat)), pt)
return pt
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99