forked from jaywalnut310/vits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·483 lines (396 loc) · 17.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import os
import json
import argparse
import itertools
import math
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
import commons
import utils
from data_utils import (
TextAudioLoader,
TextAudioCollate,
DistributedBucketSampler
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '80000'
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(
log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(
backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioCollate()
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler)
if rank == 0:
eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
batch_size=hps.train.batch_size, pin_memory=True,
drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
if hps.load.fine_tune:
try:
_, _, _, epoch_str = utils.load_checkpoint(
hps.load.generator_file, net_g, None)
_, _, _, epoch_str = utils.load_checkpoint(
hps.load.discriminator_file, net_d, None)
global_step = (epoch_str - 1) * len(train_loader) / \
hps.train.grad_accumulation
epoch_str = 1
global_step = 0
except:
epoch_str = 1
global_step = 0
else:
try:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
global_step = (epoch_str - 1) * len(train_loader) / \
hps.train.grad_accumulation
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
scaler = GradScaler(enabled=hps.train.fp16_run)
if rank == 0:
train_and_evaluate(epoch_str, rank, hps, [net_g, net_d], [optim_g, optim_d], [
scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(epoch_str, rank, hps, [net_g, net_d], [optim_g, optim_d], [
scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
def train_and_evaluate(epoch_str, rank, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
grad_accumulation = hps.train.grad_accumulation
global global_step
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
net_g, net_d = nets
optim_g, optim_d = optims
if writers is not None:
writer, writer_eval = writers
# the accumulated steps
accumulated_steps_d = 0
accumulated_steps_g = 0
for epoch in range(epoch_str, hps.train.epochs + 1):
train_loader.batch_sampler.set_epoch(epoch)
net_g.train()
net_d.train()
# iteration losses for the descriminator
iter_loss_disc = 0.0
# iteration losses for the generator
iter_loss_gen = 0.0
iter_loss_fm = 0.0
iter_loss_mel = 0.0
iter_loss_dur = 0.0
iter_loss_kl = 0.0
iter_loss_gen_all = 0.0
iter_loss_disc_all = 0.0
# array of iteration losses
iter_losses_gen = []
iter_losses_disc_r = []
iter_losses_disc_g = []
total_iter = (len(train_loader) // grad_accumulation) * \
grad_accumulation
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
# avoid using a batch that is not going to make a whole grad accumulation
if batch_idx >= total_iter:
break
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
rank, non_blocking=True)
spec, spec_lengths = spec.cuda(
rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(
x, x_lengths, spec, spec_lengths)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat = y_hat.float()
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
loss_disc_all /= grad_accumulation
iter_loss_disc += loss_disc / grad_accumulation
iter_loss_disc_all += loss_disc_all
# update the losses_disc_r
idx = 0
for l in losses_disc_r:
# make sure that we have a value
if idx == len(iter_losses_disc_r):
iter_losses_disc_r.append(0)
# update the loss
iter_losses_disc_r[idx] += (l / grad_accumulation)
idx += 1
# update the losses_disc_g
idx = 0
for l in losses_disc_g:
# make sure that we have a value
if idx == len(iter_losses_disc_g):
iter_losses_disc_g.append(0)
# update the loss
iter_losses_disc_g[idx] += (l / grad_accumulation)
idx += 1
# do we need to reset the gradients at the end of the accumulation step
if accumulated_steps_d == 0:
optim_d.zero_grad(set_to_none=True)
# we accumulated once more
accumulated_steps_d += 1
scaler.scale(loss_disc_all).backward()
# do we need to optimize
if accumulated_steps_d % grad_accumulation == 0:
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(
net_d.parameters(), None)
scaler.step(optim_d)
# we are back and the beginning of the accumulation step
accumulated_steps_d = 0
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p,
z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
loss_gen_all /= grad_accumulation
iter_loss_gen += (loss_gen / grad_accumulation)
iter_loss_fm += (loss_fm / grad_accumulation)
iter_loss_mel += (loss_mel / grad_accumulation)
iter_loss_dur += (loss_dur / grad_accumulation)
iter_loss_kl += (loss_kl / grad_accumulation)
iter_loss_gen_all += loss_gen_all
idx = 0
for l in losses_gen:
# make sure that we have a value
if idx == len(iter_losses_gen):
iter_losses_gen.append(0)
# update the loss
iter_losses_gen[idx] += (l / grad_accumulation)
idx += 1
# do we need to reset the gradients at the end of the accumulation step
if accumulated_steps_g == 0:
optim_g.zero_grad(set_to_none=True)
# we accumulated once more
accumulated_steps_g += 1
scaler.scale(loss_gen_all).backward()
# do we need to optimize
if accumulated_steps_g % grad_accumulation == 0:
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(
net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
# we are back and the beginning of the accumulation step
accumulated_steps_g = 0
# if this is the root node log stuff
if rank == 0:
if accumulated_steps_d == 0 and \
accumulated_steps_g == 0:
logger.info("Finished global step " + str(global_step))
if global_step % hps.train.log_interval == 0 and \
accumulated_steps_d == 0 and \
accumulated_steps_g == 0:
lr = optim_g.param_groups[0]['lr']
losses = [iter_loss_disc, iter_loss_gen, iter_loss_fm,
iter_loss_mel, iter_loss_dur, iter_loss_kl]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": iter_loss_gen_all, "loss/d/total": iter_loss_disc_all,
"learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": iter_loss_fm, "loss/g/mel": iter_loss_mel,
"loss/g/dur": iter_loss_dur, "loss/g/kl": iter_loss_kl})
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/attn": utils.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
# we save the model only if the iteration is completed
if global_step % hps.train.eval_interval == 0 and \
accumulated_steps_d == 0 and \
accumulated_steps_g == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(
hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(
hps.model_dir, "D_{}.pth".format(global_step)))
if accumulated_steps_g % grad_accumulation == 0 and \
accumulated_steps_d % grad_accumulation == 0:
global_step += 1
# reset the iteration loss
iter_loss_gen = 0
iter_loss_fm = 0
iter_loss_mel = 0
iter_loss_dur = 0
iter_loss_kl = 0
iter_loss_gen_all = 0
iter_loss_disc_all = 0
# reset the losses
losses_gen = []
# reset the iteration loss
iter_loss_disc = 0
losses_disc_r = []
iter_losses_disc_g = []
if rank == 0:
logger.info('====> Epoch: ' + str(epoch))
scheduler_g.step()
scheduler_d.step()
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
break
y_hat, attn, mask, * \
_ = generator.module.infer(x, x_lengths, max_len=1000)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
image_dict = {
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audio_dict = {
"gen/audio": y_hat[0, :, :y_hat_lengths[0]]
}
if global_step == 0:
image_dict.update(
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()