|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <executorch/backends/cadence/hifi/kernels/kernels.h> |
| 10 | +#include <executorch/kernels/portable/cpu/util/copy_ops_util.h> |
| 11 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 12 | + |
| 13 | +using exec_aten::ScalarType; |
| 14 | +using exec_aten::SizesType; |
| 15 | +using exec_aten::Tensor; |
| 16 | +using executorch::runtime::IntArrayRef; |
| 17 | +using executorch::runtime::KernelRuntimeContext; |
| 18 | +using executorch::runtime::kTensorDimensionLimit; |
| 19 | +using torch::executor::Error; |
| 20 | + |
| 21 | +namespace impl { |
| 22 | +namespace HiFi { |
| 23 | +namespace native { |
| 24 | + |
| 25 | +namespace { |
| 26 | + |
| 27 | +void increment_coordinate_permuted( |
| 28 | + const Tensor& tensor, |
| 29 | + size_t* const coordinate, |
| 30 | + IntArrayRef dims) { |
| 31 | + for (int i = dims.size() - 1; i >= 0; i--) { |
| 32 | + size_t d = dims[i] >= 0 ? dims[i] : dims[i] + tensor.dim(); |
| 33 | + coordinate[d]++; |
| 34 | + if (coordinate[d] == tensor.size(d)) { |
| 35 | + coordinate[d] = 0; |
| 36 | + } else { |
| 37 | + return; |
| 38 | + } |
| 39 | + } |
| 40 | +} |
| 41 | + |
| 42 | +} // namespace |
| 43 | + |
| 44 | +Tensor& permute_copy_out( |
| 45 | + KernelRuntimeContext& ctx, |
| 46 | + const Tensor& in, |
| 47 | + IntArrayRef dims, |
| 48 | + Tensor& out) { |
| 49 | + (void)ctx; |
| 50 | + |
| 51 | + ET_KERNEL_CHECK( |
| 52 | + ctx, check_permute_copy_args(in, dims, out), InvalidArgument, out); |
| 53 | + |
| 54 | + ET_KERNEL_CHECK( |
| 55 | + ctx, tensors_have_same_dim_order(in, out), InvalidArgument, out); |
| 56 | + |
| 57 | + Tensor::SizesType expected_out_size[kTensorDimensionLimit]; |
| 58 | + size_t expected_out_dim = 0; |
| 59 | + get_permute_copy_out_target_size( |
| 60 | + in, dims, expected_out_size, &expected_out_dim); |
| 61 | + ET_KERNEL_CHECK( |
| 62 | + ctx, |
| 63 | + resize_tensor(out, {expected_out_size, expected_out_dim}) == Error::Ok, |
| 64 | + InvalidArgument, |
| 65 | + out); |
| 66 | + |
| 67 | + const auto in_type = out.scalar_type(); |
| 68 | + |
| 69 | + constexpr auto name = "permute_copy.out"; |
| 70 | + constexpr int kNnlibMaxDim = 16; |
| 71 | + |
| 72 | + bool optimized = 0; |
| 73 | + |
| 74 | + if (out.scalar_type() == ScalarType::Float) |
| 75 | + optimized = 1; |
| 76 | + else if (out.scalar_type() == ScalarType::Char) |
| 77 | + optimized = 1; |
| 78 | + else if (out.scalar_type() == ScalarType::Byte) |
| 79 | + optimized = 1; |
| 80 | + |
| 81 | + if (in.dim() > kNnlibMaxDim) |
| 82 | + optimized = 0; |
| 83 | + |
| 84 | + if (optimized) { |
| 85 | + if (in_type == ScalarType::Float) { |
| 86 | + WORD32* p_inp = (WORD32*)in.const_data_ptr<float>(); |
| 87 | + WORD32* p_out = (WORD32*)out.mutable_data_ptr<float>(); |
| 88 | + |
| 89 | + WORD32 num_inp_dims = in.dim(); |
| 90 | + WORD32 num_out_dims = num_inp_dims; |
| 91 | + |
| 92 | + WORD32 p_inp_shape[kNnlibMaxDim]; |
| 93 | + WORD32 p_out_shape[kNnlibMaxDim]; |
| 94 | + WORD32 p_permute_vec[kNnlibMaxDim]; |
| 95 | + |
| 96 | + for (int i = 0; i < num_inp_dims; i++) { |
| 97 | + p_inp_shape[i] = in.size(i); |
| 98 | + p_out_shape[i] = in.size(dims[i]); |
| 99 | + p_permute_vec[i] = dims[i]; |
| 100 | + } |
| 101 | + |
| 102 | + xa_nn_transpose_32_32( |
| 103 | + p_out, |
| 104 | + p_out_shape, |
| 105 | + p_inp, |
| 106 | + p_inp_shape, |
| 107 | + p_permute_vec, |
| 108 | + num_out_dims, |
| 109 | + num_inp_dims); |
| 110 | + |
| 111 | + return out; |
| 112 | + } else if (in_type == ScalarType::Char) { |
| 113 | + WORD8* p_inp = (WORD8*)in.const_data_ptr<char>(); |
| 114 | + WORD8* p_out = (WORD8*)out.mutable_data_ptr<char>(); |
| 115 | + |
| 116 | + WORD32 num_inp_dims = in.dim(); |
| 117 | + WORD32 num_out_dims = num_inp_dims; |
| 118 | + |
| 119 | + WORD32 p_inp_shape[kNnlibMaxDim]; |
| 120 | + WORD32 p_out_shape[kNnlibMaxDim]; |
| 121 | + WORD32 p_permute_vec[kNnlibMaxDim]; |
| 122 | + |
| 123 | + for (int i = 0; i < num_inp_dims; i++) { |
| 124 | + p_inp_shape[i] = in.size(i); |
| 125 | + p_out_shape[i] = in.size(dims[i]); |
| 126 | + p_permute_vec[i] = dims[i]; |
| 127 | + } |
| 128 | + |
| 129 | + xa_nn_transpose_8_8( |
| 130 | + p_out, |
| 131 | + p_out_shape, |
| 132 | + p_inp, |
| 133 | + p_inp_shape, |
| 134 | + p_permute_vec, |
| 135 | + num_out_dims, |
| 136 | + num_inp_dims); |
| 137 | + |
| 138 | + } else if (in_type == ScalarType::Byte) { |
| 139 | + WORD8* p_inp = (WORD8*)in.const_data_ptr<uint8_t>(); |
| 140 | + WORD8* p_out = (WORD8*)out.mutable_data_ptr<uint8_t>(); |
| 141 | + |
| 142 | + WORD32 num_inp_dims = in.dim(); |
| 143 | + WORD32 num_out_dims = num_inp_dims; |
| 144 | + |
| 145 | + WORD32 p_inp_shape[kNnlibMaxDim]; |
| 146 | + WORD32 p_out_shape[kNnlibMaxDim]; |
| 147 | + WORD32 p_permute_vec[kNnlibMaxDim]; |
| 148 | + |
| 149 | + for (int i = 0; i < num_inp_dims; i++) { |
| 150 | + p_inp_shape[i] = in.size(i); |
| 151 | + p_out_shape[i] = in.size(dims[i]); |
| 152 | + p_permute_vec[i] = dims[i]; |
| 153 | + } |
| 154 | + |
| 155 | + xa_nn_transpose_8_8( |
| 156 | + p_out, |
| 157 | + p_out_shape, |
| 158 | + p_inp, |
| 159 | + p_inp_shape, |
| 160 | + p_permute_vec, |
| 161 | + num_out_dims, |
| 162 | + num_inp_dims); |
| 163 | + } |
| 164 | + return out; |
| 165 | + } |
| 166 | + |
| 167 | + size_t in_coord[kTensorDimensionLimit] = {0}; |
| 168 | + size_t trailing_dims_memo[kTensorDimensionLimit]; |
| 169 | + executorch::runtime::memoizeTrailingDims(in, trailing_dims_memo); |
| 170 | + |
| 171 | + // in and out must be the same dtype |
| 172 | + ET_SWITCH_ALL_TYPES(in_type, ctx, name, CTYPE, [&] { |
| 173 | + const CTYPE* const in_data = in.const_data_ptr<CTYPE>(); |
| 174 | + CTYPE* const out_data = out.mutable_data_ptr<CTYPE>(); |
| 175 | + |
| 176 | + for (size_t i = 0; i < out.numel(); ++i) { |
| 177 | + out_data[i] = |
| 178 | + in_data[executorch::runtime::coordinateToIndexWithTrailingDimsMemo( |
| 179 | + in, in_coord, trailing_dims_memo)]; |
| 180 | + increment_coordinate_permuted(in, in_coord, dims); |
| 181 | + } |
| 182 | + }); |
| 183 | + |
| 184 | + return out; |
| 185 | +} |
| 186 | + |
| 187 | +} // namespace native |
| 188 | +} // namespace HiFi |
| 189 | +} // namespace impl |
0 commit comments