forked from mir-group/nequip-example-extension
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimal_allegro_with_custom_module.yaml
77 lines (61 loc) · 1.83 KB
/
minimal_allegro_with_custom_module.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Example YAML file for using the example "AddNoiseToPairEnergies" Allegro extension in this package
# HYPERPARAMETERS ARE BASED ON Allegro's `minimal.yaml` and are NOT meant for real training!
# general
root: results/aspirin
run_name: allegro-addnoise
seed: 123456
dataset_seed: 123456
# -- network --
model_builders:
- allegro.model.Allegro
- nequip_example_extension.model.AddNoiseToPairEnergies # <- !! note this goes right after building the core Allegro model, since we want to add things to that *before* we wrap it in scalings and gradient computations with the following model builders
- PerSpeciesRescale
- ForceOutput
- RescaleEnergyEtc
noise_sigma: 0.05 # options from the config will propagate through the initialization system to the AddNoiseModule module
# cutoffs
r_max: 6.0
# network symmetry
l_max: 1
parity: o3_full
# allegro layers:
num_layers: 1
env_embed_multiplicity: 32
two_body_latent_mlp_latent_dimensions: [32, 64]
two_body_latent_mlp_nonlinearity: silu
latent_mlp_latent_dimensions: [64]
latent_mlp_nonlinearity: silu
latent_resnet: true
env_embed_mlp_latent_dimensions: []
env_embed_mlp_nonlinearity: null
edge_eng_mlp_latent_dimensions: [32]
edge_eng_mlp_nonlinearity: null
# data set
dataset: npz
dataset_url: http://quantum-machine.org/gdml/data/npz/aspirin_ccsd.zip
dataset_file_name: ./benchmark_data/aspirin_ccsd-train.npz
key_mapping:
z: atomic_numbers
E: total_energy
F: forces
R: pos
npz_fixed_field_keys:
- atomic_numbers
# A mapping of chemical species to type indexes is necessary if the dataset is provided with atomic numbers instead of type indexes.
chemical_symbol_to_type:
H: 0
C: 1
O: 2
# logging
wandb: false
verbose: info
# training
n_train: 25
n_val: 5
batch_size: 1
max_epochs: 10
learning_rate: 0.002
# loss function
loss_coeffs: total_energy
# optimizer
optimizer_name: Adam