-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcrfmnes.cpp
executable file
·499 lines (445 loc) · 17.1 KB
/
crfmnes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright (c) Dietmar Wolz.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory.
// Eigen based implementation of Fast Moving Natural Evolution Strategy
// for High-Dimensional Problems (CR-FM-NES), see https://arxiv.org/abs/2201.11422 .
// Derived from https://github.com/nomuramasahir0/crfmnes .
//
// Requires Eigen version >= 3.4 because new slicing capabilities are used, see
// https://eigen.tuxfamily.org/dox-devel/group__TutorialSlicingIndexing.html
// requires https://github.com/bab2min/EigenRand for random number generation.
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <iostream>
#include <random>
#include <float.h>
#include <stdint.h>
#include <ctime>
#include <inttypes.h>
#include "evaluator.h"
using namespace std;
namespace crmfnes {
static vec sequence(double start, double end, double step) {
int size = (int) ((end - start) / step + 1);
vec d(size);
double value = start;
for (int r = 0; r < size; r++) {
d(r) = value;
value += step;
}
return d;
}
class CrfmnesOptimizer {
public:
CrfmnesOptimizer(int64_t runid_, Fitness* fitfun_, int dim_, vec m_, double sigma_, int lamb_,
int maxEvaluations_, double stopfitness_,
double penalty_coef_, bool use_constraint_violation_, int64_t seed) {
runid = runid_;
fitfun = fitfun_;
dim = dim_;
m = fitfun->encode(m_);
sigma = sigma_;
lamb = lamb_;
mu = lamb_/2;
maxEvaluations = maxEvaluations_;
stopfitness = stopfitness_;
penalty_coef = penalty_coef_ > 0 ? penalty_coef_ : 1e5;
use_constraint_violation = use_constraint_violation_;
rs = new pcg64(seed);
stop = 0;
v = normalVec(dim, *rs) / sqrt(dim);
D = constant(dim, 1);
w_rank_hat = ((log(sequence(1, lamb, 1).array()) * -1.) + log(mu + 1)).cwiseMax(0);
w_rank = (w_rank_hat / w_rank_hat.sum()).array() - (1. / lamb);
vec wlamb = w_rank.array() + (1. / lamb);
mueff = 1. / (wlamb.transpose() * wlamb)(0,0);
cs = (mueff + 2.) / (dim + mueff + 5.);
cc = (4. + mueff / dim) / (dim + 4. + 2. * mueff / dim);
c1_cma = 2. / (pow(dim + 1.3, 2) + mueff);
// initialization
chiN = sqrt(dim) * (1. - 1. / (4. * dim) + 1. / (21. * dim * dim));
pc = zeros(dim);
ps = zeros(dim);
// distance weight parameter
h_inv = get_h_inv(dim);
// learning rate
eta_m = 1.0;
eta_move_sigma = 1.;
g = 0;
no_of_evals = 0;
z = mat(dim, lamb);
f_best = INFINITY;
x_best = vec(dim);
};
virtual ~CrfmnesOptimizer() {
delete rs;
}
void doOptimize() {
// -------------------- Generation Loop --------------------------------
for (iterations = 1; fitfun->evaluations() < maxEvaluations && !fitfun->terminate();
iterations++) {
// generate and evaluate lamb offspring
try {
mat xs = ask();
vec evs(lamb);
fitfun->values(xs, evs);
tell(evs);
} catch (std::exception &e) {
stop = -1;
}
if (stop != 0)
return;
}
}
mat getPopulation() {
return xs_no_sort;
}
vec getBestX() {
return x_best;
}
double getBestValue() {
return f_best;
}
double getIterations() {
return iterations;
}
int getStop() {
return stop;
}
Fitness* getFitfun() {
return fitfun;
}
int getDim() {
return dim;
}
int getPopsize() {
return lamb;
}
mat ask() {
mat zhalf = normal(dim, mu, *rs);
for (int i = 0; i < lamb; i++) {
if (i < mu) z.col(i) = zhalf.col(i);
else z.col(i) = -zhalf.col(i-mu);
}
normv = v.norm();
normv2 = normv*normv;
vbar = v / normv;
y = z + ((sqrt(1 + normv2) - 1.) * (vbar * (vbar.transpose() * z)));
x = ((sigma * y.array()).colwise() * D.array()).colwise() + m.array();
return x;
}
void tell(vec &evs) {
evals_no_sort = vec(evs);
for (int k = 0; k < lamb; k++) {
if (!isfinite(evals_no_sort[k]))
evals_no_sort[k] = DBL_MAX;
}
xs_no_sort = mat(x);
ivec sorted_indices;
if (use_constraint_violation) {
vec violations = fitfun->violations(x, penalty_coef);
sorted_indices = sort_indices_by(evals_no_sort + violations, z);
} else
sorted_indices = sort_indices_by(evals_no_sort, z);
int best_eval_id = sorted_indices[0];
double f_best_ = evals_no_sort[best_eval_id];
z = mat(z)(Eigen::indexing::all, sorted_indices);
y = mat(y)(Eigen::indexing::all, sorted_indices);
x = mat(x)(Eigen::indexing::all, sorted_indices);
no_of_evals += lamb;
g += 1;
if (f_best_ < f_best) {
f_best = f_best_;
x_best = fitfun->decode(xs_no_sort.col(best_eval_id));
if (f_best < stopfitness)
stop = 1;
//cout << f_best << endl;
}
// This operation assumes that if the solution is infeasible, infinity comes in as input.
double lambF = 0;
for (int k = 0; k < lamb; k++)
if (evals_no_sort[k] < DBL_MAX) lambF++;
// evolution path p_sigma
ps = (1 - cs) * ps + sqrt(cs * (2. - cs) * mueff) * (z * w_rank);
double ps_norm = ps.norm();
// distance weight
vec w_tmp(lamb);
for (int k = 0; k < lamb; k++)
w_tmp[k] = w_rank_hat[k] * w_dist_hat(z.col(k), lambF);
vec weights_dist = (w_tmp / w_tmp.sum()).array() - 1. / lamb;
// switching weights and learning rate
vec weights = ps_norm >= chiN ? weights_dist : w_rank;
double eta_sigma = ps_norm >= chiN ? eta_move_sigma :
(ps_norm >= 0.1 * chiN ? eta_stag_sigma(lambF) : eta_conv_sigma(lambF));
// update pc, m
vec wxm = (x.array().colwise() - m.array()).matrix() * weights;
pc = (1. - cc) * pc + sqrt(cc * (2. - cc) * mueff) * wxm / sigma;
m += eta_m * wxm;
// calculate s, t
// step1
double normv4 = normv2 * normv2;
mat exY(dim, lamb+1);
for (int k = 0; k < lamb; k++)
exY.col(k) = y.col(k);
exY.col(lamb) = pc.array() / D.array();
mat yy = exY.array() * exY.array(); // dim x lamb+1
vec ip_yvbar = vbar.transpose() * exY;
mat yvbar = exY.array().colwise() * vbar.array(); // dim x lamb+1. exYのそれぞれの列にvbarがかかる
double gammav = 1. + normv2;
vec vbarbar = vbar.array() * vbar.array();
double alphavd = min(1., sqrt(normv4 + (2 * gammav - sqrt(gammav)) / vbarbar.maxCoeff()) / (2. + normv2)); // scalar
mat vbar_bc = zeros(dim, lamb+1).colwise() + vbar; // broadcasting vbar
vec ibg = (ip_yvbar.array()*ip_yvbar.array()) + gammav;
mat t = (exY.array().rowwise() * ip_yvbar.transpose().array()) -
(vbar_bc.array().rowwise() * ibg.transpose().array()) / 2.;
double b = -(1 - alphavd * alphavd) * normv4 / gammav + 2 * alphavd * alphavd;
vec H = constant(dim, 2.) - (b + 2 * alphavd * alphavd) * vbarbar; // dim x 1
vec invH = 1. / H.array();
mat s_step1 = yy.array() - normv2 / gammav * (yvbar.array().rowwise() * ip_yvbar.transpose().array()).array()
- constant(dim, lamb+1, 1.).array(); // dim x lamb+1
vec ip_vbart = vbar.transpose() * t; // 1 x lamb+1
mat s_step2 = s_step1.array()
- (alphavd / gammav * ((2 + normv2) * (t.array().colwise() * vbar.array()).array()
- (normv2 * (vbarbar * ip_vbart.transpose())).array())); // dim x lamb+1
vec invHvbarbar = invH.array() * vbarbar.array();
vec ip_s_step2invHvbarbar = invHvbarbar.transpose() * s_step2; // 1 x lamb+1
double div = 1 + b * (vbarbar.transpose() * invHvbarbar)(0,0);
if (div == 0)
// div = 1E-13;int
throw std::invalid_argument( "division by 0" );
mat s = (s_step2.array().colwise() * invH.array()).array()
- ((b / div) * (invHvbarbar * ip_s_step2invHvbarbar.transpose())).array(); // dim x lamb+1
vec ip_svbarbar = vbarbar.transpose() * s; // 1 x lamb+1
t = t.array() - alphavd * ((2 + normv2) * (s.array().colwise() * vbar.array()).array()
- (vbar * ip_svbarbar.transpose()).array()); // dim x lamb+1
// update v, D
vec exw(lamb+1);
for (int k = 0; k < lamb; k++)
exw[k] = eta_B(lambF) * weights[k];
exw[lamb] = c1(lambF);
v = v.array() + (t * exw).array() / normv;
D = D.array() + (s * exw).array() * D.array();
// calculate detA
if (D.minCoeff() < 0) {
//throw std::invalid_argument( "D < 0" );
stop = -1;
return;
}
double nthrootdetA = cexp(D.array().log().sum() / dim + log(1 + (v.transpose() * v)(0,0)) / (2 * dim));
D = D.array() / nthrootdetA;
// update sigma
double G_s = (((z.array() * z.array()).array() - constant(dim, lamb, 1.).array()).matrix() * weights).sum() / dim;
sigma = sigma * cexp(eta_sigma / 2 * G_s);
}
private:
double cexp(double a) { return exp(min(a, 100.0)); } // avoid overflow
double c1(double lambF) { return c1_cma * (dim - 5) / 6 * (lambF / lamb); }
double eta_B(double lambF) { return tanh((min(0.02 * lambF, 3 * log(dim)) + 5) / (0.23 * dim + 25)); }
double alpha_dist(double lambF) { return h_inv * min(1., sqrt(((double)lamb) / dim)) * sqrt(((double)lambF) / lamb); }
double w_dist_hat(mat z, double lambF) { return cexp(alpha_dist(lambF) * z.norm()); }
double eta_stag_sigma(double lambF) { return tanh((0.024 * lambF + 0.7 * dim + 20.) / (dim + 12.)); }
double eta_conv_sigma(double lambF) { return 2. * tanh((0.025 * lambF + 0.75 * dim + 10.) / (dim + 4.)); }
double f(double a) { return ((1. + a * a) * cexp(a * a / 2.) / 0.24) - 10. - dim; }
double f_prime(double a) { return (1. / 0.24) * a * cexp(a * a / 2.) * (3. + a * a); }
double get_h_inv(int dim) {
double h_inv = 1.0;
while (abs(f(h_inv)) > 1e-10)
h_inv = h_inv - 0.5 * (f(h_inv) / f_prime(h_inv));
return h_inv;
}
int num_feasible(const vec &evals) {
int n = 0;
for (int i = 0; i < evals.size(); i++)
if (evals[i] != INFINITY) n++;
return n;
}
ivec sort_indices_by(const vec &evals, mat z) {
int lam = evals.size();
ivec sorted_indices = sort_index(evals);
vec sorted_evals = evals(sorted_indices);
int no_of_feasible_solutions = num_feasible(sorted_evals);
if (no_of_feasible_solutions != lam) {
vec distances(lam - no_of_feasible_solutions);
int n = 0;
for (int i = 0; i < lam; i++)
if (evals[i] == INFINITY) {
distances[n] = z.col(i).squaredNorm();
n++;
}
ivec indices_sorted_by_distance = sort_index(distances);
for (int i = no_of_feasible_solutions; i < lam; i++)
sorted_indices[i] = sorted_indices[no_of_feasible_solutions
+ indices_sorted_by_distance[i-no_of_feasible_solutions]];
}
return sorted_indices;
}
int64_t runid;
Fitness *fitfun;
int dim;
vec m;
double sigma;
int lamb;
int mu;
bool use_constraint_violation;
pcg64 *rs;
vec v;
vec D;
double penalty_coef;
vec w_rank_hat;
vec w_rank;
double mueff;
double cs;
double cc;
double c1_cma;
// initialization
double chiN;
vec pc;
vec ps;
// distance weight parameter
double h_inv;
// learning rate
double eta_m;
double eta_move_sigma;
double g = 0;
int no_of_evals;
mat z;
double f_best;
vec x_best;
mat xs_no_sort;
vec evals_no_sort;
int iterations;
int maxEvaluations;
double stopfitness;
int stop;
double normv;
double normv2;
vec vbar;
mat y;
mat x;
};
}
using namespace crmfnes;
extern "C" {
void optimizeCRFMNES_C(int64_t runid, callback_parallel func_par, int dim,
double *init, double *lower, double *upper, double sigma,
int maxEvals, double stopfitness, int popsize,
int64_t seed, double penalty_coef, bool use_constraint_violation, bool normalize, double* res) {
vec guess(dim), lower_limit(dim), upper_limit(dim);
for (int i = 0; i < dim; i++) // guess is mandatory
guess[i] = init[i];
if (lower != NULL && upper != NULL) {
for (int i = 0; i < dim; i++) {
guess[i] = init[i];
lower_limit[i] = lower[i];
upper_limit[i] = upper[i];
}
} else {
lower_limit.resize(0);
upper_limit.resize(0);
normalize = false;
}
Fitness fitfun(noop_callback, func_par, dim, 1, lower_limit, upper_limit);
fitfun.setNormalize(normalize);
CrfmnesOptimizer opt(runid, &fitfun, dim, guess, sigma, popsize,
maxEvals, stopfitness, penalty_coef, use_constraint_violation, seed);
try {
opt.doOptimize();
} catch (std::exception &e) {
cout << e.what() << endl;
}
vec bestX = opt.getBestX();
double bestY = opt.getBestValue();
for (int i = 0; i < dim; i++)
res[i] = bestX[i];
res[dim] = bestY;
res[dim + 1] = fitfun.evaluations();
res[dim + 2] = opt.getIterations();
res[dim + 3] = opt.getStop();
}
uintptr_t initCRFMNES_C(int64_t runid, int dim,
double *init, double *lower, double *upper, double sigma,
int popsize, int64_t seed, double penalty_coef, bool use_constraint_violation, bool normalize) {
vec guess(dim), lower_limit(dim), upper_limit(dim);
for (int i = 0; i < dim; i++) // guess is mandatory
guess[i] = init[i];
if (lower != NULL && upper != NULL) {
for (int i = 0; i < dim; i++) {
guess[i] = init[i];
lower_limit[i] = lower[i];
upper_limit[i] = upper[i];
}
} else {
lower_limit.resize(0);
upper_limit.resize(0);
normalize = false;
}
Fitness* fitfun = new Fitness(noop_callback, noop_callback_par, dim, 1, lower_limit, upper_limit);
fitfun->setNormalize(normalize);
CrfmnesOptimizer* opt = new CrfmnesOptimizer(runid, fitfun, dim, guess, sigma, popsize,
0, -DBL_MAX, penalty_coef, use_constraint_violation, seed);
return (uintptr_t) opt;
}
void destroyCRFMNES_C(uintptr_t ptr) {
CrfmnesOptimizer* opt = (CrfmnesOptimizer*)ptr;
Fitness* fitfun = opt->getFitfun();
delete fitfun;
delete opt;
}
void askCRFMNES_C(uintptr_t ptr, double* xs) {
CrfmnesOptimizer *opt = (CrfmnesOptimizer*) ptr;
int n = opt->getDim();
int lamb = opt->getPopsize();
mat popX = opt->ask();
Fitness* fitfun = opt->getFitfun();
for (int p = 0; p < lamb; p++) {
vec x = fitfun->getClosestFeasible(fitfun->decode(popX.col(p)));
for (int i = 0; i < n; i++)
xs[p * n + i] = x[i];
}
}
int tellCRFMNES_C(uintptr_t ptr, double* ys) {//, double* xs) {
CrfmnesOptimizer *opt = (CrfmnesOptimizer*) ptr;
int lamb = opt->getPopsize();
// int dim = opt->getDim();
// Fitness* fitfun = opt->getFitfun();
// mat popX(dim, lamb);
// for (int p = 0; p < lamb; p++) {
// vec x(dim);
// for (int i = 0; i < dim; i++)
// x[i] = xs[p * dim + i];
// popX.col(p) = fitfun->decode(x);
// }
vec vals(lamb);
for (int i = 0; i < lamb; i++)
vals[i] = ys[i];
opt->tell(vals);
return opt->getStop();
}
int populationCRFMNES_C(uintptr_t ptr, double* xs) {
CrfmnesOptimizer *opt = (CrfmnesOptimizer*) ptr;
int dim = opt->getDim();
int lamb = opt->getPopsize();
mat popX = opt->getPopulation();
for (int p = 0; p < lamb; p++) {
vec x = popX.col(p);
for (int i = 0; i < dim; i++)
x[i] = xs[p * dim + i];
}
return opt->getStop();
}
int resultCRFMNES_C(uintptr_t ptr, double* res) {
CrfmnesOptimizer *opt = (CrfmnesOptimizer*) ptr;
vec bestX = opt->getBestX();
double bestY = opt->getBestValue();
int n = bestX.size();
for (int i = 0; i < bestX.size(); i++)
res[i] = bestX[i];
res[n] = bestY;
Fitness* fitfun = opt->getFitfun();
res[n + 1] = fitfun->evaluations();
res[n + 2] = opt->getIterations();
res[n + 3] = opt->getStop();
return opt->getStop();
}
}