Skip to content

Latest commit

 

History

History
443 lines (327 loc) · 11 KB

chapter04-IteratorAndGenerator.md

File metadata and controls

443 lines (327 loc) · 11 KB

chapter04-迭代器、生成器、面向过程编程

一、迭代器

一 迭代的概念

#迭代器即迭代的工具,那什么是迭代呢?
#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值
while True: #只是单纯地重复,因而不是迭代
    print('===>') 
    
l=[1,2,3]
count=0
while count < len(l): #迭代
    print(l[count])
    count+=1

二 为何要有迭代器?什么是可迭代对象?什么是迭代器对象?

#1、为何要有迭代器?
对于序列类型字符串列表元组我们可以使用索引的方式迭代取出其包含的元素但对于字典集合文件等类型是没有索引的若还想取出其内部包含的元素则必须找出一种不依赖于索引的迭代方式这就是迭代器

#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象即obj.__iter__如下
'hello'.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{'a':1}.__iter__
{'a','b'}.__iter__
open('a.txt').__iter__

#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象

文件类型是迭代器对象
open('a.txt').__iter__()
open('a.txt').__next__()


#4、注意:
迭代器对象一定是可迭代对象而可迭代对象不一定是迭代器对象

三 迭代器对象的使用

dic={'a':1,'b':2,'c':3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True

print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志

#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:
    try:
        k=next(iter_dic)
        print(dic[k])
    except StopIteration:
        break
        
#这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环

四 for循环

#基于for循环,我们可以完全不再依赖索引去取值了
dic={'a':1,'b':2,'c':3}
for k in dic:
    print(dic[k])

#for循环的工作原理
#1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic
#2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码
#3: 重复过程2,直到捕捉到异常StopIteration,结束循环

五 迭代器的优缺点

#优点:
  - 提供一种统一的不依赖于索引的迭代方式
  - 惰性计算节省内存
#缺点:
  - 无法获取长度只有在next完毕才知道到底有几个值- 一次性的只能往后走不能往前退

二 生成器

一 什么是生成器

#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print('====>first')
    yield 1
    print('====>second')
    yield 2
    print('====>third')
    yield 3
    print('====>end')

g=func()
print(g) #<generator object func at 0x0000000002184360> 

二 生成器就是迭代器

g.__iter__
g.__next__
#2、所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)

三 练习

1、自定义函数模拟range(1,7,2)

2、模拟管道,实现功能:tail -f access.log | grep '404'

#题目一:
def my_range(start,stop,step=1):
    while start < stop:
        yield start
        start+=step

#执行函数得到生成器,本质就是迭代器
obj=my_range(1,7,2) #1  3  5
print(next(obj))
print(next(obj))
print(next(obj))
print(next(obj)) #StopIteration

#应用于for循环
for i in my_range(1,7,2):
    print(i)

#题目二
import time
def tail(filepath):
    with open(filepath,'rb') as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.2)

def grep(pattern,lines):
    for line in lines:
        line=line.decode('utf-8')
        if pattern in line:
            yield line

for line in grep('404',tail('access.log')):
    print(line,end='')

#测试
with open('access.log','a',encoding='utf-8') as f:
    f.write('出错啦404\n')

四 协程函数

#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
    print('%s 准备开始吃饭啦' %name)
    food_list=[]
    while True:
        food=yield food_list
        print('%s 吃了 %s' % (name,food))
        food_list.append(food)

g=eater('egon')
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send('蒸羊羔')
g.send('蒸鹿茸')
g.send('蒸熊掌')
g.send('烧素鸭')
g.close()
g.send('烧素鹅')
g.send('烧鹿尾')

五 练习 1、编写装饰器,实现初始化协程函数的功能

2、实现功能:grep -rl 'python' /etc

#题目一:
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper
@init
def eater(name):
    print('%s 准备开始吃饭啦' %name)
    food_list=[]
    while True:
        food=yield food_list
        print('%s 吃了 %s' % (name,food))
        food_list.append(food)

g=eater('egon')
g.send('蒸羊羔')

#题目二:
#注意:target.send(...)在拿到target的返回值后才算执行结束
import os
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper

@init
def search(target):
    while True:
        filepath=yield
        g=os.walk(filepath)
        for dirname,_,files in g:
            for file in files:
                abs_path=r'%s\%s' %(dirname,file)
                target.send(abs_path)
@init
def opener(target):
    while True:
        abs_path=yield
        with open(abs_path,'rb') as f:
            target.send((f,abs_path))
@init
def cat(target):
    while True:
        f,abs_path=yield
        for line in f:
            res=target.send((line,abs_path))
            if res:
                break
@init
def grep(pattern,target):
    tag=False
    while True:
        line,abs_path=yield tag
        tag=False
        if pattern.encode('utf-8') in line:
            target.send(abs_path)
            tag=True
@init
def printer():
    while True:
        abs_path=yield
        print(abs_path)


g=search(opener(cat(grep('你好',printer()))))
# g.send(r'E:\CMS\aaa\db')
g=search(opener(cat(grep('python',printer()))))
g.send(r'E:\CMS\aaa\db')

六 yield总结

#1、把函数做成迭代器
#2、对比return,可以返回多次值,可以挂起/保存函数的运行状态

三 面向过程编程

#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

#2、定义
面向过程的核心是过程二字过程指的是解决问题的步骤即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线是一种机械式的思维方式

#3、优点:复杂的问题流程化,进而简单化

#4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

#5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

#6、举例
流水线1用户输入用户名密码--->用户验证--->欢迎界面

流水线2用户输入sql--->sql解析--->执行功能

ps:函数的参数传入,是函数吃进去的食物,而函数return的返回值,是函数拉出来的结果,面向过程的思路就是,把程序的执行当做一串首尾相连的功能,该功能可以是函数的形式,然后一个函数吃,拉出的东西给另外一个函数吃,另外一个函数吃了再继续拉给下一个函数吃。。。

示例:复杂的问题变得简单,但扩展功能麻烦

#=============复杂的问题变得简单
#注册功能:
#阶段1: 接收用户输入账号与密码,完成合法性校验
def talk():
    while True:
        username=input('请输入你的用户名: ').strip()
        if username.isalpha():
            break
        else:
            print('用户必须为字母')

    while True:
        password1=input('请输入你的密码: ').strip()
        password2=input('请再次输入你的密码: ').strip()
        if password1 == password2:
            break
        else:
            print('两次输入的密码不一致')

    return username,password1

#阶段2: 将账号密码拼成固定的格式
def register_interface(username,password):
    format_str='%s:%s\n' %(username,password)
    return format_str

#阶段3: 将拼好的格式写入文件
def handle_file(format_str,filepath):
    with open(r'%s' %filepath,'at',encoding='utf-8') as f:
        f.write(format_str)


def register():
    user,pwd=talk()
    format_str=register_interface(user,pwd)
    handle_file(format_str,'user.txt')


register()


#=============牵一发而动全身,扩展功能麻烦
#阶段1: 接收用户输入账号与密码,完成合法性校验
def talk():
    while True:
        username=input('请输入你的用户名: ').strip()
        if username.isalpha():
            break
        else:
            print('用户必须为字母')

    while True:
        password1=input('请输入你的密码: ').strip()
        password2=input('请再次输入你的密码: ').strip()
        if password1 == password2:
            break
        else:
            print('两次输入的密码不一致')


    role_dic={
        '1':'user',
        '2':'admin'
    }
    while True:
        for k in role_dic:
            print(k,role_dic[k])

        choice=input('请输入您的身份>>: ').strip()
        if choice not in role_dic:
            print('输入的身份不存在')
            continue
        role=role_dic[choice]

    return username,password1,role

#阶段2: 将账号密码拼成固定的格式
def register_interface(username,password,role):
    format_str='%s:%s:%s\n' %(username,password,role)
    return format_str

#阶段3: 将拼好的格式写入文件
def handle_file(format_str,filepath):
    with open(r'%s' %filepath,'at',encoding='utf-8') as f:
        f.write(format_str)


def register():
    user,pwd,role=talk()
    format_str=register_interface(user,pwd,role)
    handle_file(format_str,'user.txt')


register()


#ps:talk内对用户名\密码\角色的合法性校验也可以摘出来做成单独的功能,但本例就写到一个函数内了,力求用更少的逻辑来为大家说明过程式编程的思路