forked from alibaba/tidevice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_perf.py
346 lines (282 loc) · 12 KB
/
_perf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Created on Tue May 11 2021 16:30:17 by codeskyblue
"""
import enum
import io
import threading
import time
import typing
import uuid
from collections import defaultdict, namedtuple
from typing import Any, Iterator, Optional, Tuple, Union
import weakref
from ._device import BaseDevice
from ._proto import *
class DataType(str, enum.Enum):
SCREENSHOT = "screenshot"
CPU = "cpu"
MEMORY = "memory"
NETWORK = "network" # 流量
FPS = "fps"
PAGE = "page"
GPU = "gpu"
CallbackType = typing.Callable[[DataType, dict], None]
class RunningProcess:
""" acturally there is a better way to monitor process pid """
PID_UPDATE_DURATION = 5.0
def __init__(self, d: BaseDevice, bundle_id: str):
self._ins = d.connect_instruments()
self._bundle_id = bundle_id
self._app_infos = list(d.installation.iter_installed(app_type=None))
self._next_update_time = 0.0
self._last_pid = None
self._lock = threading.Lock()
weakref.finalize(self, self._ins.close)
@property
def bundle_id(self) -> str:
return self._bundle_id
def get_pid(self) -> Union[int, None]:
""" return pid """
with self._lock:
if time.time() < self._next_update_time:
return self._last_pid
if self._last_pid and self._ins.is_running_pid(self._last_pid):
self._next_update_time = time.time() + self.PID_UPDATE_DURATION
return self._last_pid
for pinfo in self._ins.app_process_list(self._app_infos):
if pinfo['bundle_id'] == self._bundle_id:
self._last_pid = pinfo['pid']
self._next_update_time = time.time(
) + self.PID_UPDATE_DURATION
# print(self._bundle_id, "pid:", self._last_pid)
return self._last_pid
class WaitGroup(object):
"""WaitGroup is like Go sync.WaitGroup.
Without all the useful corner cases.
"""
def __init__(self):
self.count = 0
self.cv = threading.Condition()
def add(self, n):
self.cv.acquire()
self.count += n
self.cv.release()
def done(self):
self.cv.acquire()
self.count -= 1
if self.count == 0:
self.cv.notify_all()
self.cv.release()
# FIXME(ssx): here should quit when timeout, but maybe not
def wait(self, timeout: Optional[float] = None):
self.cv.acquire()
while self.count > 0:
self.cv.wait(timeout=timeout)
self.cv.release()
def gen_stimestamp(seconds: Optional[float] = None) -> str:
""" 生成专门用于tmq-service.taobao.org平台使用的timestampString """
if seconds is None:
seconds = time.time()
return int(seconds * 1000)
def iter_fps(d: BaseDevice) -> Iterator[Any]:
with d.connect_instruments() as ts:
for data in ts.iter_opengl_data():
fps = data['CoreAnimationFramesPerSecond'] # fps from GPU
# print("FPS:", fps)
yield DataType.FPS, {"fps": fps, "time": time.time(), "value": fps}
def iter_gpu(d: BaseDevice) -> Iterator[Any]:
with d.connect_instruments() as ts:
for data in ts.iter_opengl_data():
device_utilization = data['Device Utilization %'] # Device Utilization
tiler_utilization = data['Tiler Utilization %'] # Tiler Utilization
renderer_utilization = data['Renderer Utilization %'] # Renderer Utilization
yield DataType.GPU, {"device": device_utilization, "renderer": renderer_utilization,
"tiler": tiler_utilization, "time": time.time(), "value": device_utilization}
def iter_screenshot(d: BaseDevice) -> Iterator[Tuple[DataType, dict]]:
for img in d.iter_screenshot():
_time = time.time()
img.thumbnail((500, 500)) # 缩小图片已方便保存
# example of convert image to bytes
# buf = io.BytesIO()
# img.save(buf, format="JPEG")
# turn image to URL
yield DataType.SCREENSHOT, {"time": _time, "value": img}
ProcAttrs = namedtuple("ProcAttrs", SYSMON_PROC_ATTRS)
def _iter_complex_cpu_memory(d: BaseDevice,
rp: RunningProcess) -> Iterator[dict]:
"""
content in iterator
- {'type': 'system_cpu',
'sys': -1.0,
'total': 55.21212121212122,
'user': -1.0}
- {'type': 'process',
'cpu_usage': 2.6393411792622925,
'mem_anon': 54345728,
'mem_rss': 130760704,
'pid': 1344}
"""
with d.connect_instruments() as ts:
for info in ts.iter_cpu_memory():
pid = rp.get_pid()
if info is None or len(info) != 2:
continue
sinfo, pinfolist = info
if 'CPUCount' not in sinfo:
sinfo, pinfolist = pinfolist, sinfo
if 'CPUCount' not in sinfo:
continue
cpu_count = sinfo['CPUCount']
sys_cpu_usage = sinfo['SystemCPUUsage']
cpu_total_load = sys_cpu_usage['CPU_TotalLoad']
cpu_user = sys_cpu_usage['CPU_UserLoad']
cpu_sys = sys_cpu_usage['CPU_SystemLoad']
if 'Processes' not in pinfolist:
continue
# 这里的total_cpu_usage加起来的累计值大概在0.5~5.0之间
total_cpu_usage = 0.0
for attrs in pinfolist['Processes'].values():
pinfo = ProcAttrs(*attrs)
if isinstance(pinfo.cpuUsage, float): # maybe NSNull
total_cpu_usage += pinfo.cpuUsage
cpu_usage = 0.0
attrs = pinfolist['Processes'].get(pid)
if attrs is None: # process is not running
# continue
# print('process not launched')
pass
else:
assert len(attrs) == len(SYSMON_PROC_ATTRS)
# print(ProcAttrs, attrs)
pinfo = ProcAttrs(*attrs)
cpu_usage = pinfo.cpuUsage
# next_list_process_time = time.time() + next_timeout
# cpu_usage, rss, mem_anon, pid = pinfo
# 很诡异的计算方法,不过也就这种方法计算出来的CPU看起来正常一点
# 计算后的cpuUsage范围 [0, 100]
# cpu_total_load /= cpu_count
# cpu_usage *= cpu_total_load
# if total_cpu_usage > 0:
# cpu_usage /= total_cpu_usage
# print("cpuUsage: {}, total: {}".format(cpu_usage, total_cpu_usage))
# print("memory: {} MB".format(pinfo.physFootprint / 1024 / 1024))
yield dict(
type="process",
pid=pid,
phys_memory=pinfo.physFootprint, # 物理内存
phys_memory_string="{:.1f} MiB".format(pinfo.physFootprint / 1024 /
1024),
vss=pinfo.memVirtualSize,
rss=pinfo.memResidentSize,
anon=pinfo.memAnon, # 匿名内存? 这个是啥
cpu_count=cpu_count,
cpu_usage=cpu_usage, # 理论上最高 100.0 (这里是除以过cpuCount的)
sys_cpu_usage=cpu_total_load,
attr_cpuUsage=pinfo.cpuUsage,
attr_cpuTotal=cpu_total_load,
attr_ctxSwitch=pinfo.ctxSwitch,
attr_intWakeups=pinfo.intWakeups,
attr_systemInfo=sys_cpu_usage)
def iter_cpu_memory(d: BaseDevice, rp: RunningProcess) -> Iterator[Any]:
for minfo in _iter_complex_cpu_memory(d, rp): # d.iter_cpu_mem(bundle_id):
yield DataType.CPU, {
"timestamp": gen_stimestamp(),
"pid": minfo['pid'],
"value": minfo['cpu_usage'], # max 100.0?, maybe not
"sys_value": minfo['sys_cpu_usage'],
"count": minfo['cpu_count']
}
yield DataType.MEMORY, {
"pid": minfo['pid'],
"timestamp": gen_stimestamp(),
"value": minfo['phys_memory'] / 1024 / 1024, # MB
}
def set_interval(it: Iterator[Any], interval: float):
while True:
start = time.time()
data = next(it)
yield data
wait = max(0, interval - (time.time() - start))
time.sleep(wait)
def iter_network_flow(d: BaseDevice, rp: RunningProcess) -> Iterator[Any]:
n = 0
with d.connect_instruments() as ts:
for nstat in ts.iter_network():
# if n < 2:
# n += 1
# continue
nstat['timestamp'] = gen_stimestamp()
yield DataType.NETWORK, nstat
# {
# "timestamp": gen_stimestamp(),
# "downFlow": (nstat['rx.bytes'] or 0) / 1024,
# "upFlow": (nstat['tx.bytes'] or 0) / 1024
# }
def append_data(wg: WaitGroup, stop_event: threading.Event,
idata: Iterator[Any], callback: CallbackType, filters: list):
for _type, data in idata:
assert isinstance(data, dict)
assert isinstance(_type, DataType)
if stop_event.is_set():
wg.done()
break
if isinstance(data, dict) and "time" in data:
stimestamp = gen_stimestamp(data.pop('time'))
data.update({"timestamp": stimestamp})
# result[_type].append(data)
if _type in filters:
callback(_type, data)
# print(_type, data)
stop_event.set() # 当有一个中断,其他的全部中断,让错误暴露出来
class Performance():
# PROMPT_TITLE = "tidevice performance"
def __init__(self, d: BaseDevice, perfs: typing.List[DataType] = []):
self._d = d
self._bundle_id = None
self._stop_event = threading.Event()
self._wg = WaitGroup()
self._started = False
self._result = defaultdict(list)
self._perfs = perfs
# the callback function accepts all the data
self._callback = None
def start(self, bundle_id: str, callback: CallbackType = None):
if not callback:
# 默认不输出屏幕的截图(暂时没想好怎么处理)
callback = lambda _type, data: print(_type.value, data, flush=True) if _type != DataType.SCREENSHOT and _type in self._perfs else None
self._rp = RunningProcess(self._d, bundle_id)
self._thread_start(callback)
def _thread_start(self, callback: CallbackType):
iters = []
if DataType.CPU in self._perfs or DataType.MEMORY in self._perfs:
iters.append(iter_cpu_memory(self._d, self._rp))
if DataType.FPS in self._perfs:
iters.append(iter_fps(self._d))
if DataType.GPU in self._perfs:
iters.append(iter_gpu(self._d))
if DataType.SCREENSHOT in self._perfs:
iters.append(set_interval(iter_screenshot(self._d), 1.0))
if DataType.NETWORK in self._perfs:
iters.append(iter_network_flow(self._d, self._rp))
for it in (iters): # yapf: disable
self._wg.add(1)
threading.Thread(name="perf",
target=append_data,
args=(self._wg, self._stop_event, it,
callback,self._perfs),
daemon=True).start()
def stop(self): # -> PerfReport:
self._stop_event.set()
with self._d.connect_instruments() as ts:
print('Stop Sampling...')
if DataType.NETWORK in self._perfs: ts.stop_network_iter()
if DataType.GPU in self._perfs or DataType.FPS in self._perfs: ts.stop_iter_opengl_data()
if DataType.CPU in self._perfs or DataType.MEMORY in self._perfs: ts.stop_iter_cpu_memory()
print("\nFinished!")
# memory and fps will take at least 1 second to catch _stop_event
# to make function run faster, we not using self._wg.wait(..) here
# > self._wg.wait(timeout=3.0) # wait all stopped
# > self._started = False
def wait(self, timeout: float):
return self._wg.wait(timeout=timeout)