-
Notifications
You must be signed in to change notification settings - Fork 231
/
Copy pathwavesolver.py
258 lines (221 loc) · 10 KB
/
wavesolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from devito import Function, TimeFunction, DevitoCheckpoint, CheckpointOperator, Revolver
from devito.tools import memoized_meth
from examples.seismic.acoustic.operators import (
ForwardOperator, AdjointOperator, GradientOperator, BornOperator
)
class AcousticWaveSolver:
"""
Solver object that provides operators for seismic inversion problems
and encapsulates the time and space discretization for a given problem
setup.
Parameters
----------
model : Model
Physical model with domain parameters.
geometry : AcquisitionGeometry
Geometry object that contains the source (SparseTimeFunction) and
receivers (SparseTimeFunction) and their position.
kernel : str, optional
Type of discretization, centered or shifted.
space_order: int, optional
Order of the spatial stencil discretisation. Defaults to 4.
"""
def __init__(self, model, geometry, kernel='OT2', space_order=4, **kwargs):
self.model = model
self.model._initialize_bcs(bcs="damp")
self.geometry = geometry
assert self.model.grid == geometry.grid
self.space_order = space_order
self.kernel = kernel
# Cache compiler options
self._kwargs = kwargs
@property
def dt(self):
# Time step can be \sqrt{3}=1.73 bigger with 4th order
if self.kernel == 'OT4':
return self.model.dtype(1.73 * self.model.critical_dt)
return self.model.critical_dt
@memoized_meth
def op_fwd(self, save=None):
"""Cached operator for forward runs with buffered wavefield"""
return ForwardOperator(self.model, save=save, geometry=self.geometry,
kernel=self.kernel, space_order=self.space_order,
**self._kwargs)
@memoized_meth
def op_adj(self):
"""Cached operator for adjoint runs"""
return AdjointOperator(self.model, save=None, geometry=self.geometry,
kernel=self.kernel, space_order=self.space_order,
**self._kwargs)
@memoized_meth
def op_grad(self, save=True):
"""Cached operator for gradient runs"""
return GradientOperator(self.model, save=save, geometry=self.geometry,
kernel=self.kernel, space_order=self.space_order,
**self._kwargs)
@memoized_meth
def op_born(self):
"""Cached operator for born runs"""
return BornOperator(self.model, save=None, geometry=self.geometry,
kernel=self.kernel, space_order=self.space_order,
**self._kwargs)
def forward(self, src=None, rec=None, u=None, model=None, save=None, **kwargs):
"""
Forward modelling function that creates the necessary
data objects for running a forward modelling operator.
Parameters
----------
src : SparseTimeFunction or array_like, optional
Time series data for the injected source term.
rec : SparseTimeFunction or array_like, optional
The interpolated receiver data.
u : TimeFunction, optional
Stores the computed wavefield.
model : Model, optional
Object containing the physical parameters.
vp : Function or float, optional
The time-constant velocity.
save : bool, optional
Whether or not to save the entire (unrolled) wavefield.
Returns
-------
Receiver, wavefield and performance summary
"""
# Source term is read-only, so re-use the default
src = src or self.geometry.src
# Create a new receiver object to store the result
rec = rec or self.geometry.rec
# Create the forward wavefield if not provided
u = u or TimeFunction(name='u', grid=self.model.grid,
save=self.geometry.nt if save else None,
time_order=2, space_order=self.space_order)
model = model or self.model
# Pick vp from model unless explicitly provided
kwargs.update(model.physical_params(**kwargs))
# Execute operator and return wavefield and receiver data
summary = self.op_fwd(save).apply(src=src, rec=rec, u=u,
dt=kwargs.pop('dt', self.dt), **kwargs)
return rec, u, summary
def adjoint(self, rec, srca=None, v=None, model=None, **kwargs):
"""
Adjoint modelling function that creates the necessary
data objects for running an adjoint modelling operator.
Parameters
----------
rec : SparseTimeFunction or array-like
The receiver data. Please note that
these act as the source term in the adjoint run.
srca : SparseTimeFunction or array-like
The resulting data for the interpolated at the
original source location.
v: TimeFunction, optional
The computed wavefield.
model : Model, optional
Object containing the physical parameters.
vp : Function or float, optional
The time-constant velocity.
Returns
-------
Adjoint source, wavefield and performance summary.
"""
# Create a new adjoint source and receiver symbol
srca = srca or self.geometry.new_src(name='srca', src_type=None)
# Create the adjoint wavefield if not provided
v = v or TimeFunction(name='v', grid=self.model.grid,
time_order=2, space_order=self.space_order)
model = model or self.model
# Pick vp from model unless explicitly provided
kwargs.update(model.physical_params(**kwargs))
# Execute operator and return wavefield and receiver data
summary = self.op_adj().apply(srca=srca, rec=rec, v=v,
dt=kwargs.pop('dt', self.dt), **kwargs)
return srca, v, summary
def jacobian_adjoint(self, rec, u, src=None, v=None, grad=None, model=None,
checkpointing=False, **kwargs):
"""
Gradient modelling function for computing the adjoint of the
Linearized Born modelling function, ie. the action of the
Jacobian adjoint on an input data.
Parameters
----------
rec : SparseTimeFunction
Receiver data.
u : TimeFunction
Full wavefield `u` (created with save=True).
v : TimeFunction, optional
Stores the computed wavefield.
grad : Function, optional
Stores the gradient field.
model : Model, optional
Object containing the physical parameters.
vp : Function or float, optional
The time-constant velocity.
Returns
-------
Gradient field and performance summary.
"""
dt = kwargs.pop('dt', self.dt)
# Gradient symbol
grad = grad or Function(name='grad', grid=self.model.grid)
# Create the forward wavefield
v = v or TimeFunction(name='v', grid=self.model.grid,
time_order=2, space_order=self.space_order)
model = model or self.model
# Pick vp from model unless explicitly provided
kwargs.update(model.physical_params(**kwargs))
if checkpointing:
u = TimeFunction(name='u', grid=self.model.grid,
time_order=2, space_order=self.space_order)
cp = DevitoCheckpoint([u])
n_checkpoints = None
wrap_fw = CheckpointOperator(self.op_fwd(save=False),
src=src or self.geometry.src,
u=u, dt=dt, **kwargs)
wrap_rev = CheckpointOperator(self.op_grad(save=False), u=u, v=v,
rec=rec, dt=dt, grad=grad, **kwargs)
# Run forward
wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, rec.data.shape[0]-2)
wrp.apply_forward()
summary = wrp.apply_reverse()
else:
summary = self.op_grad().apply(rec=rec, grad=grad, v=v, u=u, dt=dt,
**kwargs)
return grad, summary
def jacobian(self, dmin, src=None, rec=None, u=None, U=None, model=None, **kwargs):
"""
Linearized Born modelling function that creates the necessary
data objects for running an adjoint modelling operator.
Parameters
----------
src : SparseTimeFunction or array_like, optional
Time series data for the injected source term.
rec : SparseTimeFunction or array_like, optional
The interpolated receiver data.
u : TimeFunction, optional
The forward wavefield.
U : TimeFunction, optional
The linearized wavefield.
model : Model, optional
Object containing the physical parameters.
vp : Function or float, optional
The time-constant velocity.
"""
# Source term is read-only, so re-use the default
src = src or self.geometry.src
# Create a new receiver object to store the result
rec = rec or self.geometry.rec
# Create the forward wavefields u and U if not provided
u = u or TimeFunction(name='u', grid=self.model.grid,
time_order=2, space_order=self.space_order)
U = U or TimeFunction(name='U', grid=self.model.grid,
time_order=2, space_order=self.space_order)
model = model or self.model
# Pick vp from model unless explicitly provided
kwargs.update(model.physical_params(**kwargs))
# Execute operator and return wavefield and receiver data
summary = self.op_born().apply(dm=dmin, u=u, U=U, src=src, rec=rec,
dt=kwargs.pop('dt', self.dt), **kwargs)
return rec, u, U, summary
# Backward compatibility
born = jacobian
gradient = jacobian_adjoint