-
Notifications
You must be signed in to change notification settings - Fork 88
/
eval.py
126 lines (94 loc) · 3.69 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (C) 2017 DataArt
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import logging.config
import cv2
import pafy
import tensorflow as tf
from models import yolo
from log_config import LOGGING
from utils.general import format_predictions, find_class_by_name, is_url
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('detector')
FLAGS = tf.flags.FLAGS
def evaluate(_):
win_name = 'Detector'
cv2.namedWindow(win_name)
video = FLAGS.video
if is_url(video):
videoPafy = pafy.new(video)
video = videoPafy.getbest(preftype="mp4").url
cam = cv2.VideoCapture(video)
if not cam.isOpened():
raise IOError('Can\'t open "{}"'.format(FLAGS.video))
source_h = cam.get(cv2.CAP_PROP_FRAME_HEIGHT)
source_w = cam.get(cv2.CAP_PROP_FRAME_WIDTH)
model_cls = find_class_by_name(FLAGS.model_name, [yolo])
model = model_cls(input_shape=(source_h, source_w, 3))
model.init()
frame_num = 0
start_time = time.time()
fps = 0
try:
while True:
ret, frame = cam.read()
if not ret:
logger.info('Can\'t read video data. Potential end of stream')
return
predictions = model.evaluate(frame)
for o in predictions:
x1 = o['box']['left']
x2 = o['box']['right']
y1 = o['box']['top']
y2 = o['box']['bottom']
color = o['color']
class_name = o['class_name']
# Draw box
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
# Draw label
(test_width, text_height), baseline = cv2.getTextSize(
class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 1)
cv2.rectangle(frame, (x1, y1),
(x1+test_width, y1-text_height-baseline),
color, thickness=cv2.FILLED)
cv2.putText(frame, class_name, (x1, y1-baseline),
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
end_time = time.time()
fps = fps * 0.9 + 1/(end_time - start_time) * 0.1
start_time = end_time
# Draw additional info
frame_info = 'Frame: {0}, FPS: {1:.2f}'.format(frame_num, fps)
cv2.putText(frame, frame_info, (10, frame.shape[0]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
logger.info(frame_info)
cv2.imshow(win_name, frame)
if predictions:
logger.info('Predictions: {}'.format(
format_predictions(predictions)))
key = cv2.waitKey(1) & 0xFF
# Exit
if key == ord('q'):
break
# Take screenshot
if key == ord('s'):
cv2.imwrite('frame_{}.jpg'.format(time.time()), frame)
frame_num += 1
finally:
cv2.destroyAllWindows()
cam.release()
model.close()
if __name__ == '__main__':
tf.flags.DEFINE_string('video', 0, 'Path to the video file.')
tf.flags.DEFINE_string('model_name', 'Yolo2Model', 'Model name to use.')
tf.app.run(main=evaluate)