This repository contains the code for all the experiments discussed in the paper.
├── dataset
│ ├── demographics.csv
│ ├── demographics.txt
│ ├── PatientDemographics.csv
│ ├── raw
│ └── WalksDemographics.csv
├── Linear Prediction Residual for Efficient Diagnosis of Parkinson’s Disease from Gait.pdf
├── Pipeline.jpg
├── README.md
└── src
├── Ablation.ipynb
├── Comparisons
│ ├── Baseline.ipynb
│ ├── Batch.sh
│ ├── Maachi et al.ipynb
│ ├── TimeBaseline.py
│ ├── timebaseline.txt
│ ├── TimeMaachietal.py
│ └── timeMaachietal.txt
├── DemographicsPreprocessing.ipynb
├── EvaluateValSplits
│ ├── PatientLevelSplit.ipynb
│ ├── WalkLevelSplit.ipynb
│ └── WindowSplit.ipynb
├── generateLPresidual.m
├── Original.ipynb
├── timeLPresidual.sh
├── timeLPresidual.txt
├── timeOriginal.py
├── timeOriginal.sh
└── timeOriginal.txt
-
Install Matlab
-
Install Python dependencies
pip install -r requirements.txt
-
Download dataset from Phisionet and place it in
dataset/raw
. -
Run the matlab script
src/generateLPresidual.m
to preprocess the dataset and generate LPresiduals -
View and Run Notebooks with Jupyter which can be started with the following command.
jupyter
If you find this work useful please cite.
@inproceedings{alle2021linear,
title={Linear prediction residual for efficient diagnosis of Parkinson’s disease from gait},
author={Alle, Shanmukh and Priyakumar, U},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={614--623},
year={2021},
organization={Springer}
}