-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
362 lines (281 loc) · 16.6 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse, pickle, os, multiprocessing
from pprint import pprint
from datetime import datetime
import sys
from copy import deepcopy
from math import floor
from prettytable import PrettyTable
import time
from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from openmmtools.integrators import NoseHooverChainVelocityVerletIntegrator
from sys import stdout
import numpy as np
import os, pickle, progressbar
from termcolor import colored
from trajectory_class import Trajectory, interval_divide, get_max_processes
from custom_units import *
from convert_xyz_to_npz import convert_xyz_to_npz
# Using cython to make specific parts involving
# lots of floating point operations faster
sys.path.append('cython_files/pbc_adjustment')
import pbc_adjustment
def timing(f):
# measure time taken by a function call
def wrap(*args):
time1 = time.time()
ret = f(*args)
time2 = time.time()
print('{:s} function took {:.3f} ms'.format(f.__name__, (time2-time1)*1000.0))
return ret
return wrap
def get_force_magnitude(r, eps=0.238 * kilocalories_per_mole, sig=3.4 * angstrom ):
if r == 0:
raise ValueError
return 4 * eps * ( -(12 * (sig**12) )/(r**13) + (6.0*(sig**6))/(r**7) )
def get_my_forces_helper(args):
return get_my_forces(*args)
#@timing
def get_my_forces(dist_matrix, st_atom_ind, en_atom_ind, b_size):
force_unit = kilocalorie/(nanometer*mole)
ret = []
dist_matrix_values_only = np.array([i._value for i in dist_matrix])
for atom_ind in range(st_atom_ind, en_atom_ind+1):
# Getting the dx array using numpy
#del dx_array[atom_ind] # above computed dx_array is not used anymore. So deleting just for comparision with numpy's dx_array_2
temp_b_size = np.array([i._value for i in b_size]) * b_size[0].unit
dx_array_2 = dist_matrix_values_only - dist_matrix_values_only[atom_ind] # Added May 26
temp_b_size_2 = np.array([i._value for i in temp_b_size])
pbc_adjustment.pbc_adjust(dx_array_2, temp_b_size_2)
dx_array_2 = np.delete(dx_array_2, atom_ind, 0) * dist_matrix.unit
total_distances = np.linalg.norm(dx_array_2, axis=1) * dx_array_2.unit # Get total distances
indices_within_cutoff = np.argwhere(total_distances <= lj_cutoff)
indices_within_cutoff = np.reshape(indices_within_cutoff, (-1))
if len(indices_within_cutoff) == 0:
raise ValueError("No atoms within cutoff range. Maybe somethong wrong with the system.")
total_distances = total_distances[indices_within_cutoff]
dx_array_2 = dx_array_2[indices_within_cutoff]
force_magnitudes = [get_force_magnitude(i) for i in total_distances]
force_magnitudes = np.array([i._value for i in force_magnitudes]) * force_magnitudes[0].unit
forces_due_to_each_atom = (dx_array_2 * force_magnitudes[:, np.newaxis]) / total_distances[:, np.newaxis]
final_force = np.sum(forces_due_to_each_atom, axis=0)
ret.append(final_force)
return ret
def append_traj(traj_filename, traj_array, st_ind, en_ind, skip_every_n_frames):
with open(traj_filename, 'a') as out_file:
for traj_array_frame in traj_array[st_ind:en_ind+1:skip_every_n_frames]:
out_file.write(str(len(traj_array_frame)) + '\n')
#out_file.write(" generated by psp" + '\n')
out_file.write(str(" Distance_unit = angstroms, Vel unit = nm/ps, frc unit = kJ/nm mol" + "\n"))
if '_pos.xyz' in traj_filename:
for c in traj_array_frame: # openmm uses nanometre, multiply by 10 to dump angstroms
out_file.write(str(" Ar" + "\t" + str(10*c[0]._value) + "\t" + str(10*c[1]._value) + "\t" + str(10*c[2]._value) + "\n"))
else:
if '_frc.xyz' in traj_filename:
assert traj_array[st_ind][0].unit == kilojoule / (nanometer * mole)
if '_vel.xyz' in traj_filename:
assert traj_array[st_ind][0].unit == nanometer / picosecond
for c in traj_array_frame:
out_file.write(str(" Ar" + "\t" + str(c[0]._value) + "\t" + str(c[1]._value) + "\t" + str(c[2]._value) + "\n"))
return
def convert_forces_to_atomic_units(f):
return f.in_units_of(hartree / bohr / mole) / constants.AVOGADRO_CONSTANT_NA
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
now_time = datetime.now().strftime('%b-%d-%Y--%H-%M-%S')
pdb_filename = 'argon_random_poisson_translated_0.pdb'
#pdb_filename = 'argon_500_atoms_equilibrated.pdb'
box_size = 1.67 * nanometer # box for 96 atoms system
#box_size = 2.8947833204138995 * nanometer # box for 500 atoms system with same density as 96 atoms and 1.67 nanometer system
assert pdb_filename is not None
pdb = PDBFile(pdb_filename)
# If not a cuboid, then give jut 1 side cube
if not isinstance(box_size, list):
box_size = [box_size for _ in range(3)]
pdb.topology.setUnitCellDimensions([box_size_val._value for box_size_val in box_size]*box_size[0].unit)
print(pdb.topology.getPeriodicBoxVectors())
print(pdb.topology.getUnitCellDimensions())
assert tuple([box_size_val._value for box_size_val in box_size])*box_size[0].unit == pdb.topology.getUnitCellDimensions() == tuple([pdb.topology.getPeriodicBoxVectors()[box_vector_ind][box_vector_ind]._value for box_vector_ind in range(3)])*pdb.topology.getPeriodicBoxVectors().unit
steps = 10000
TEMPERATURE = 90.0*kelvin
PRESSURE = 1.8*1.01325*bar # 1 atm = 1.01325 bar
skip_every_n_frames = 1
simulation_timestep = 0.002 * picoseconds
parser = argparse.ArgumentParser(description="Sim with custom NN force")
parser.add_argument('--model_folder' , help='folder containing the saved model')
parser.add_argument('--mode' , help='Run in classical force field mode or NN predictor mode')
parser.add_argument('--save_traj_at_end' , type=str2bool, help='True if whole traj will be saved at the end from RAM. False if traj is saved every step. Set False if steps is a high value coz whole traj wont fit in RAM.')
parser.add_argument('--write_pos_only' , type=str2bool, help='If True, just records the pos trajectory. If False, records pos , vel and frc traj.')
parser.add_argument('--also_save_npz' , type=str2bool, help='If True, also saves all traj files as npz at the end(converts the .xyz files to npz). If false, just xyz files are saved. xyz files are still saved. note that npz files are written at the end, so they wont be written partially if the simulation crashes. xyz files will have the partial trajectory.')
args = parser.parse_args()
model_folder = args.model_folder
mode = args.mode
save_traj_at_end = args.save_traj_at_end
write_pos_only = args.write_pos_only
also_save_npz = args.also_save_npz
if not save_traj_at_end:
clear_traj_every_n_frames = 5000 # clear traj from RAM every clear_traj_every_n_frames steps
assert clear_traj_every_n_frames % skip_every_n_frames == 0 # skip_every_n_frames must be a multiple of clear_traj_every_n_frames
if mode not in ['classical', 'classical-and-predictor']:
raise ValueError('Invalid mode supplied')
# creating system
forcefield = ForceField("empty_ff.xml")
system = forcefield.createSystem(
pdb.topology,
removeCMMotion = True,
)
num_of_particles = system.getNumParticles()
print(colored("Argon system initialized with "+str(num_of_particles)+" particles", 'green'))
output_file_prefix = 'sim__' + str(num_of_particles) + '_atoms__' + str(steps) + '_timesteps__' + 'skip_every_n_frames_' + str(skip_every_n_frames) + '__' + str(TEMPERATURE._value) + '_kelvin__' + str(PRESSURE._value) + '_bar__' + '_'.join(["{0:.4f}".format(box_size_val._value) for box_size_val in box_size]) + '_box_size_nanometers__' + mode + '_mode__' + now_time
print("output_file_prefix = ", output_file_prefix)
lj_cutoff = 0.80 * nanometer
# Process pool initialization
if mode in ['classical-and-predictor']:
max_processes = get_max_processes(num_of_particles)
if num_of_particles < 2000: # a bad atoms-per-process ratio will slow down the computation because of communication overheads
max_processes = 10
process_pool = multiprocessing.Pool(max_processes)
if mode in ['classical-and-predictor']:
sys.path.append('./saved_weights/')
#from force_predictor import NeuralNetwork
from force_predictor_multiple_densities import NeuralNetwork
nn_model = NeuralNetwork(dummy=True).load_all(model_folder)
nn_model.predict_forces(np.random.random((num_of_particles, 50, 3)), process_pool) # Sample prediction for the model to "warm up". Without this, a BLAS error is thrown for some reason
predictor_force = CustomExternalForce("- cx*x - cy*y - cz*z")
predictor_force.addPerParticleParameter('cx')
predictor_force.addPerParticleParameter('cy')
predictor_force.addPerParticleParameter('cz')
predictor_force.setForceGroup(1)
params = [0, 0, 0]
for i in range(num_of_particles):
predictor_force.addParticle(i, params)
system.addForce(predictor_force)
# Adding the classical force field
if mode in ['classical', 'classical-and-predictor']:
argon_charge = 0.0 * elementary_charge
cutoff_type = openmm.NonbondedForce.CutoffPeriodic
mass = 39.9 * amu # argon
sigma = 3.4 * angstrom # argon
cutoff = 8.0 * angstrom
epsilon = 0.238 * kilocalories_per_mole # argon
dispersion_correction = True
nb = NonbondedForce()
nb.setNonbondedMethod(cutoff_type)
nb.setCutoffDistance(cutoff)
print("Cutoff dist = ", nb.getCutoffDistance())
nb.setUseDispersionCorrection(dispersion_correction)
for i in range(num_of_particles):
nb.addParticle(argon_charge, sigma, epsilon)
system.addForce(nb)
print("switching dist = ", nb.getSwitchingDistance())
print("Nonbonded method = ", nb.getNonbondedMethod())
# Add thermostat and barostat
thermostat = AndersenThermostat(TEMPERATURE*kelvin, 1/picosecond)
system.addForce(thermostat)
#print(colored("WARNING: Barostat is on", 'magenta'))
#barostat = MonteCarloBarostat(PRESSURE*bar, TEMPERATURE*kelvin)
#system.addForce(barostat)
# setting up integrator
#integrator = LangevinIntegrator(TEMPERATURE, 1/picosecond, simulation_timestep) # no thermostat needed if using LangevinIntegrator
#integrator = VerletIntegrator(simulation_timestep) # if using verlet, use AndersenThermostat
#integrator = AndersenVelocityVerletIntegrator(TEMPERATURE, 1/picosecond, simulation_timestep)
integrator = NoseHooverChainVelocityVerletIntegrator(system=system, temperature=TEMPERATURE, timestep=simulation_timestep)
#creating simulation context
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
# adding reporters
reporter_step_ct = 1 # After how many timesteps each detail will be logged to reporter
simulation.reporters.append(StateDataReporter(output_file_prefix+'_state_data.dat',
reporter_step_ct,
step=True,
potentialEnergy = True,
kineticEnergy = True,
totalEnergy = True,
temperature = True,
volume = True,
density = True,
separator='\t'))
#minimizing system
print("Executing simulation.minimizeEnergy()")
simulation.minimizeEnergy() # do a classical minimization first
traj = Trajectory(box_size=box_size, time_step=simulation_timestep)
print_flag = False
#running simulation with steps broken up
bar = progressbar.ProgressBar(max_value=steps-1,
#redirect_stderr=True
)
pos_traj_filename = output_file_prefix+'_pos.xyz'
vel_traj_filename = output_file_prefix+'_vel.xyz'
frc_traj_filename = output_file_prefix+'_frc.xyz'
# Running simulation step by step
for step in range(steps):
state = simulation.context.getState(getPositions=True,
getForces=True,
getVelocities=True,
)
traj.append_frame(state.getPositions(asNumpy=True))
if not write_pos_only:
traj.append_vel_frame(state.getVelocities(asNumpy=True))
traj.append_frc_frame(state.getForces(asNumpy=True))
if mode in ['classical-and-predictor']:
envs = traj.get_envs_for_frame(step, 50, process_pool)
envs = envs.in_units_of(angstroms)
assert envs.unit == angstroms
envs, _ = traj.separate_values_and_unit(envs)
forces = nn_model.predict_forces(envs, process_pool) # these are in Hartree / Bohr
forces = forces * (hartree / bohr)
for i in range(num_of_particles):
predictor_force.setParticleParameters(i, i, forces[i].in_units_of(kilojoule/nanometer)*AVOGADRO_CONSTANT_NA) # THESE FORCES GOING IN MUST BE IN kilojoule/(nm mole)
predictor_force.updateParametersInContext(simulation.context)
if print_flag:
# just getting information for what is going on with the forces and velocities
print(colored('Forces that are fed in in step '+ str(step + 1), 'magenta'))
temp_forces = state.getForces(asNumpy=False)
print(colored(temp_forces, 'magenta'))
simulation.step(1)
if print_flag:
# getting information for what is going on with the positions
print(colored('Positions given after step ' + str(step + 1), 'red'))
temp_pos = state.getPositions(asNumpy=True)
print(colored(temp_pos, 'red'))
bar.update(step)
if not save_traj_at_end:
if step > 0 and (step) % clear_traj_every_n_frames == 0:
append_traj(pos_traj_filename, traj.frames, 0, clear_traj_every_n_frames-1, skip_every_n_frames)
if not write_pos_only:
append_traj(vel_traj_filename, traj.vel_frames, 0, clear_traj_every_n_frames-1, skip_every_n_frames)
append_traj(frc_traj_filename, traj.frc_frames, 0, clear_traj_every_n_frames-1, skip_every_n_frames)
traj.delete_frames(0, clear_traj_every_n_frames-1)
if not write_pos_only:
traj.delete_vel_frames(0, clear_traj_every_n_frames-1)
traj.delete_frc_frames(0, clear_traj_every_n_frames-1)
if not save_traj_at_end:
append_traj(pos_traj_filename, traj.frames, 0, traj.no_of_frames-1, skip_every_n_frames)
if not write_pos_only:
append_traj(vel_traj_filename, traj.vel_frames, 0, traj.vel_no_of_frames-1, skip_every_n_frames)
append_traj(frc_traj_filename, traj.frc_frames, 0, traj.frc_no_of_frames-1, skip_every_n_frames)
print()
if mode in ['classical-and-predictor']:
process_pool.close()
if save_traj_at_end:
if not write_pos_only:
raise NotImplementedError("Not implemented for vel and frc trajectories")
print("Writing to Trajectory file, skipping every ", skip_every_n_frames, " frames.")
traj.save_as_xyz(pos_traj_filename, skip_every_n_frames=skip_every_n_frames)
if also_save_npz:
args_list_for_npz_write = [(pos_traj_filename, pdb_filename)]
if not write_pos_only:
args_list_for_npz_write.append((vel_traj_filename, pdb_filename))
args_list_for_npz_write.append((frc_traj_filename, pdb_filename))
npz_write_process_pool = multiprocessing.Pool(len(args_list_for_npz_write))
npz_write_process_pool.starmap(convert_xyz_to_npz, args_list_for_npz_write)
npz_write_process_pool.close()