-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
54 lines (44 loc) · 1.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import torch
import torch.nn as nn
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks import ModelCheckpoint
from im2height import Im2Height
from data import NpyDataset
# load data
load_config = {
"batch_size": 6,
"pin_memory": True,
"num_workers": 12
}
def run():
#torch.multiprocessing.freeze_support()
train_loader = torch.utils.data.DataLoader(NpyDataset('data/train/x', 'data/train/y'), shuffle=True, **load_config)
test_loader = torch.utils.data.DataLoader(NpyDataset('data/test/x', 'data/test/y'), **load_config)
# training
model = Im2Height()
trainer = Trainer(
gpus=torch.cuda.device_count(),
num_nodes=1,
default_root_dir='weights/',
max_epochs=1000,
early_stop_callback=EarlyStopping(
monitor='val_l1loss',
patience=200,
verbose=False,
mode='min'
),
checkpoint_callback=ModelCheckpoint(
filepath='weights/best_run.ckpt',
save_top_k=5,
verbose=True,
monitor='val_l1loss',
mode='min',
save_last=True
#prefix=''
)
)
trainer.fit(model, train_loader, test_loader)
if __name__ == '__main__':
run()